首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Peptidoglycan polymerization complexes contain multimodular penicillin-binding proteins (PBP) of classes A and B that associate a conserved C-terminal transpeptidase module to an N-terminal glycosyltransferase or morphogenesis module, respectively. In Enterococcus faecalis, class B PBP5 mediates intrinsic resistance to the cephalosporin class of beta-lactam antibiotics, such as ceftriaxone. To identify the glycosyltransferase partner(s) of PBP5, combinations of deletions were introduced in all three class A PBP genes of E. faecalis JH2-2 (ponA, pbpF, and pbpZ). Among mutants with single or double deletions, only JH2-2 DeltaponA DeltapbpF was susceptible to ceftriaxone. Ceftriaxone resistance was restored by heterologous expression of pbpF from Enterococcus faecium but not by mgt encoding the monofunctional glycosyltransferase of Staphylococcus aureus. Thus, PBP5 partners essential for peptidoglycan polymerization in the presence of beta-lactams formed a subset of the class A PBPs of E. faecalis, and heterospecific complementation was observed with an ortholog from E. faecium. Site-directed mutagenesis of pbpF confirmed that the catalytic serine residue of the transpeptidase module was not required for resistance. None of the three class A PBP genes was essential for viability, although deletion of the three genes led to an increase in the generation time and to a decrease in peptidoglycan cross-linking. As the E. faecalis chromosome does not contain any additional glycosyltransferase-related genes, these observations indicate that glycan chain polymerization in the triple mutant is performed by a novel type of glycosyltransferase. The latter enzyme was not inhibited by moenomycin, since deletion of the three class A PBP genes led to high-level resistance to this glycosyltransferase inhibitor.  相似文献   

3.
Staphylococcus aureus penicillin-binding protein PBP2 is an enzyme involved in the last stages of peptidoglycan assembly and is an important player in the mechanism of methicillin resistance of this pathogen. PBP2 localized to the division site but its recruitment to the forming division septum was prevented after acylation by oxacillin. The presence of the antibiotic did not affect FtsZ ring maintenance nor the localization of externalized peptidoglycan precursors. Delocalization of PBP2 was also observed when its pentapeptide substrate was eliminated by addition of d-cycloserine or blocked by addition of vancomycin. Taken together these observations suggest that PBP2 is recruited to the division site by binding to its substrate, which is localized at that place. In methicillin-resistant S. aureus, addition of oxacillin does not result in delocalization of PBP2 indicating that acylated PBP2 can be maintained in place by functional PBP2A, the central element of this resistance mechanism.  相似文献   

4.
The multiple antibiotic resistance of methicillin-resistant strains of Staphylococcus aureus (MRSA) has become a major clinical problem worldwide. The key determinant of the broad-spectrum beta-lactam resistance in MRSA strains is the penicillin-binding protein 2a (PBP2a). Because of its low affinity for beta-lactams, PBP2a provides transpeptidase activity to allow cell wall synthesis at beta-lactam concentrations that inhibit the beta-lactam-sensitive PBPs normally produced by S. aureus. The crystal structure of a soluble derivative of PBP2a has been determined to 1.8 A resolution and provides the highest resolution structure for a high molecular mass PBP. Additionally, structures of the acyl-PBP complexes of PBP2a with nitrocefin, penicillin G and methicillin allow, for the first time, a comparison of an apo and acylated resistant PBP. An analysis of the PBP2a active site in these forms reveals the structural basis of its resistance and identifies features in newly developed beta-lactams that are likely important for high affinity binding.  相似文献   

5.
Abstract The methicillin-resistant strain of Staphylococcus aureus MR-1 previously reported to possess a penicillin-binding protein 3 (PBP 3) with a decreased affinity for β-lactam antibiotics was re-examined and, in common with other resistant strains, found to contain an additional PBP (PBP 2'). Expression of the additional protein, which has a very low affinity for β-lactams, was not influenced by temperature or osmolarity of the medium in contrast with strains examined previously. It was the only PBP still available to bind radioactive β-lactams and therefore still active enzymically when strain MR-1 was grown in the presence of concentrations of β-lactam antibiotics sufficient to kill sensitive strains of S. aureus . Penicillin-peptides derived by partial proteolysis of PBP 2'-penicillin complexes of MR-1 and 3 other methicillin-resistant strains appeared to be identical and different from the penicillin-peptides derived from PBP 1, PBP 2 and PBP 3, each of which gave rise to a unique series of peptides containing covalently-bound penicillin.  相似文献   

6.
Ceftizoxime, a beta-lactam antibiotic with high selective affinity for penicillin-binding protein 2 (PBP2) of Staphylococcus aureus, was used to select a spontaneous resistant mutant of S. aureus strain 27s. The stable resistant mutant ZOX3 had an increased ceftizoxime MIC and a decreased affinity of its PBP2 for ceftizoxime and produced peptidoglycan in which the proportion of highly cross-linked muropeptides was reduced. The pbpB gene of ZOX3 carried a single C-to-T nucleotide substitution at nucleotide 1373, causing replacement of a proline with a leucine at amino acid residue 458 of the transpeptidase domain of the protein, close to the SFN conserved motif. Experimental proof that this point mutation was responsible for the drug-resistant phenotype, and also for the decreased PBP2 affinity and reduced cell wall cross-linking, was provided by allelic replacement experiments and site-directed mutagenesis. Disruption of pbpD, the structural gene of PBP4, in either the parental strain or the mutant caused a large decrease in the highly cross-linked muropeptide components of the cell wall and in the mutant caused a massive accumulation of muropeptide monomers as well. Disruption of pbpD also caused increased sensitivity to ceftizoxime in both the parental cells and the ZOX3 mutant, while introduction of the plasmid-borne mecA gene, the genetic determinant of the beta-lactam resistance protein PBP2A, had the opposite effects. The findings provide evidence for the cooperative functioning of two native S. aureus transpeptidases (PBP2 and PBP4) and an acquired transpeptidase (PBP2A) in staphylococcal cell wall biosynthesis and susceptibility to antimicrobial agents.  相似文献   

7.
The polymerization of peptidoglycan is the result of two types of enzymatic activities: transglycosylation, the formation of linear glycan chains, and transpeptidation, the formation of peptide cross-bridges between the glycan strands. Staphylococcus aureus has four penicillin binding proteins (PBP1 to PBP4) with transpeptidation activity, one of which, PBP2, is a bifunctional enzyme that is also capable of catalyzing transglycosylation reactions. Additionally, two monofunctional transglycosylases have been reported in S. aureus: MGT, which has been shown to have in vitro transglycosylase activity, and a second putative transglycosylase, SgtA, identified only by sequence analysis. We have now shown that purified SgtA has in vitro transglycosylase activity and that both MGT and SgtA are not essential in S. aureus. However, in the absence of PBP2 transglycosylase activity, MGT but not SgtA becomes essential for cell viability. This indicates that S. aureus cells require one transglycosylase for survival, either PBP2 or MGT, both of which can act as the sole synthetic transglycosylase for cell wall synthesis. We have also shown that both MGT and SgtA interact with PBP2 and other enzymes involved in cell wall synthesis in a bacterial two-hybrid assay, suggesting that these enzymes may work in collaboration as part of a larger, as-yet-uncharacterized cell wall-synthetic complex.  相似文献   

8.
The glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs (MGTs) belong to the GT51 family in the sequence-based classification of GTs. They both possess five conserved motifs and use lipid II precursor (undecaprenyl-pyrophosphate-N-acetylglucosaminyl-N-acetylmuramoyl- pentapeptide) to synthesize the glycan chain of the bacterial wall peptidoglycan. MGTs appear to be dispensable for growth of some bacteria in vitro. However, new evidence shows that they may be essential for the infection process and development of pathogenic bacteria in their hosts. Only a small number of class A PBPs have been characterized so far, and no kinetic data are available on MGTs. In this study, we present the principal enzymatic properties of the Staphylococcus aureus MGT. The enzyme catalyzes glycan chain polymerization with an efficiency of approximately 5,800 M(-1) s(-1) and has a pH optimum of 7.5, and its activity requires metal ions with a maximum observed in the presence of Mn2+. The properties of S. aureus MGT are distinct from those of S. aureus PBP2 and Escherichia coli MGT, but they are similar to those of E. coli PBP1b. We examined the role of the conserved Glu100 of S. aureus MGT (equivalent to the proposed catalytic Glu233 of E. coli PBP1b) by site-directed mutagenesis. The Glu100Gln mutation results in a drastic loss of GT activity. This shows that Glu100 is also critical for catalysis in S. aureus MGT and confirms that the conserved glutamate of the first motif EDXXFXX(H/N)X(G/A) is likely the key catalytic residue in the GT51 active site.  相似文献   

9.
All clinical isolates of methicillin-resistant Staphylococcus aureus contain an extra penicillin binding protein (PBP) 2A in addition to four PBPs present in all staphylococcal strains. This extra PBP is thought to be a transpeptidase essential for the continued cell wall synthesis and growth in the presence of beta-lactam antibiotics. As an approach of testing this hypothesis we compared the muropeptide composition of cell walls of a highly methicillin-resistant S. aureus strain containing PBP2A and its isogenic Tn551 derivative with reduced methicillin resistance, which contained no PBP2A because of the insertional inactivation of the PBP2A gene. Purified cell walls were hydrolyzed into muropeptides which were subsequently resolved by reversed-phase high-performance liquid chromatography and identified by chemical and mass spectrometric analysis. The peptidoglycan composition of the two strains were identical. Both peptidoglycans were highly cross-linked mainly through pentaglycine cross-bridges, although other, chemically distinct peptide cross-bridges were also present including mono-, tri-, and tetraglycine; alanine; and alanyl-tetraglycine. Our experiments provided no experimental data for a unique transpeptidase activity associated with PBP2A.  相似文献   

10.
Emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created challenges in treatment of nosocomial infections. The recent clinical emergence of vancomycin-resistant MRSA is a new disconcerting chapter in the evolution of these strains. S. aureus normally produces four PBPs, which are susceptible to modification by beta-lactam antibiotics, an event that leads to bacterial death. The gene product of mecA from MRSA is a penicillin-binding protein (PBP) designated PBP 2a. PBP 2a is refractory to the action of all commercially available beta-lactam antibiotics. Furthermore, PBP 2a is capable of taking over the functions of the other PBPs of S. aureus in the face of the challenge by beta-lactam antibiotics. Three cephalosporins (compounds 1-3) have been studied herein, which show antibacterial activities against MRSA, including the clinically important vancomycin-resistant strains. These cephalosporins exhibit substantially smaller dissociation constants for the preacylation complex compared with the case of typical cephalosporins, but their pseudo-second-order rate constants for encounter with PBP 2a (k(2)/K(s)) are not very large (< or =200 m(-1) s(-1)). It is documented herein that these cephalosporins facilitate a conformational change in PBP 2a, a process that is enhanced in the presence of a synthetic surrogate for cell wall, resulting in increases in the k(2)/K(s) parameter and in more facile enzyme inhibition. These findings argue that the novel cephalosporins are able to co-opt interactions between PBP 2a and the cell wall in gaining access to the active site in the inhibition process, a set of events that leads to effective inhibition of PBP 2a and the attendant killing of the MRSA strains.  相似文献   

11.
The effects of fosfomycin on penicillin-binding proteins (PBPs) were studied on the methicillin-resistant Staphylococcus aureus strain CIP (Collection de l'Institut Pasteur, Paris, France) 65-25 and on a methicillin-susceptible S. aureus strain CIP 65-6. The combinations of fosfomycin and oxacillin were synergistic, additive or antagonistic, depending on antibiotic concentrations. Fosfomycin induced modifications of the PBP profile of the two strains studied. In particular, it increased the expression of PBP2. This suggested that this protein is inducible; the only PBP not affected by fosfomycin was PBP3.  相似文献   

12.
The additional penicillin-binding protein (PBP) 2' that is important in determining intrinsic resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA) has been purified by affinity chromatography using monoclonal antibodies. Monoclonal antibody 1/423.10.351 reacted in ELISA with detergent extracts of membranes from resistant organisms, but not in immunoblots with PBP 2' separated by SDS-PAGE. Immunoprecipitation experiments showed that antibody 1/423.10.351 reacted with PBP 2' in detergent extracts. The latter antibody, covalently coupled to protein A-Sepharose through the Fc region, served as an affinity matrix to purify PBP 2'. The PBP was detected in immunoblots using a second monoclonal antibody, 2/401.43. Conjugation of this antibody with alkaline phosphatase afforded more rapid detection of PBP 2' for the immunological detection of PBP 2' both in affinity-purified fractions and in resistant strains.  相似文献   

13.
Methicillin-resistant Staphylococcus aureus (MRSA) is an antibiotic-resistant strain of S. aureus afflicting hospitals and communities worldwide. Of greatest concern is its development of resistance to current last-line-of-defense antibiotics; new therapeutics are urgently needed to combat this pathogen. Ceftobiprole is a recently developed, latest generation cephalosporin and has been the first to show activity against MRSA by inhibiting essential peptidoglycan transpeptidases, including the β-lactam resistance determinant PBP2a, from MRSA. Here we present the structure of the complex of ceftobiprole bound to PBP2a. This structure provides the first look at the molecular details of an effective β-lactam-resistant PBP interaction, leading to new insights into the mechanism of ceftobiprole efficacy against MRSA.  相似文献   

14.
Staphylococcus aureus H was grown for 4 generation times with various sub-growth-inhibitory concentrations of beta-lactam antibiotics specific for particular penicillin-binding proteins (PBPs) - PBP2, clavulanic acid; PBP3, methicillin; PBP4, cefoxitin - and also with the non-specific benzylpenicillin. Isolated cell walls were digested with Chalaropsis muramidase and the resulting peptidoglycan fragments were fractionated by HPLC into disaccharide-peptide monomers and cross-linked dimers, trimers, tetramers and greater oligomers. The pattern of relative fragment concentrations with increasing amounts of drug was roughly the same regardless of the antibiotic used, monomers and dimers increasing while trimers and tetramers changed little and oligomers decreased rapidly. The patterns resembled closely those predicted by the 'random addition' model for multiple cross-link formation and not at all those predicted by the 'monomer addition' model. The O-acetylation of the peptidoglycan remained essentially unaffected under all these conditions. S. aureus MR-1, a constitutive producer of PBP2', gave similar results when treated with methicillin.  相似文献   

15.
Impact of sar and agr on methicillin resistance in Staphylococcus aureus   总被引:2,自引:0,他引:2  
Abstract The global regulators agr and sar control expression of cell wall and extracellular proteins. Inactivation of either sar and/or agr in a typical heterogeneously methicillin-resistant Staphylococcus aureus resulted in a small but reproducible decrease in the number of cells in the subpopulation expressing high methicillin resistance. The amount of low affinity penicillin-binding protein PBP2', the prerequisite for methicillin resistance, was apparently not affected, however, a reduction in PBP1 and PBP3 production was observed, suggesting that these resident PBPs of the cells might be involved somehow together with PBP2' in high level methicillin resistance.  相似文献   

16.
The additional penicillin-binding protein (PBP 2') that is important in determining intrinsic resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA) has been detected immunologically in strains from a variety of world-wide locations. This additional protein has also been definitively identified both immunologically and as a PBP in methicillin-resistant strains of S. epidermidis (MRSE). The assay described is rapid, specific and sensitive and has been used to detect PBP 2' in S. haemolyticus but not in beta-lactam resistant Streptococci.  相似文献   

17.
Corilagin and tellimagrandin I are polyphenols isolated from the extract of Arctostaphylos uvaursi and Rosa canina L. (rose red), respectively. We have reported that corilagin and tellimagrandin I remarkably reduced the minimum inhibitory concentration (MIC) of beta-lactams in methicillin-resistant Staphylococcus aureus(MRSA). In this study, we investigated the effect of corilagin and tellimagrandin I on the penicillin binding protein 2 '(2a) (PBP2 '(PBP2a)) which mainly confers the resistance to beta-lactam antibiotics in MRSA. These compounds when added to the culture medium were found to decrease production of the PBP2 '(PBP2a) slightly. Using BOCILLIN FL, a fluorescent-labeled benzyl penicillin, we found that PBP2 '(PBP2a) in MRSA cells that were grown in medium containing corilagin or tellimagrandin I almost completely lost the ability to bind BOCILLIN FL. The binding activity of PBP2 and PBP3 were also reduced to some extent by these compounds. These results indicate that inactivation of PBPs, especially of PBP2 '(PBP2a), by corilagin or tellimagrandin I is the major reason for the remarkable reduction in the resistance level of beta-lactams in MRSA. Corilagin or tellimagrandin I suppressed the activity of beta-lactamase to some extent.  相似文献   

18.
A methicillin-susceptible, novobiocin-resistant strain of Staphylococcus aureus (RN2677; methicillin MIC, 0.8 micrograms/ml) was transformed with DNA prepared from highly and homogeneously methicillin-resistant S. aureus strains (methicillin MIC, greater than or equal to 400 micrograms/ml) or from heterogeneous strains in which the majority of cells had a low level of resistance (methicillin MIC, 6.3 micrograms/ml). All methicillin-resistant transformants showed low and heterogeneous resistance (methicillin MIC, 3.1 micrograms/ml) irrespective of the resistance level of DNA donors. All transformants examined produced normal amounts of the low-affinity penicillin-binding protein (PBP) 2a, and methicillin resistance and the capacity to produce PBP 2a showed the same degree of genetic linkage to the novobiocin resistance marker with both homogeneous and heterogeneous DNA donors. Next, we isolated a methicillin-susceptible mutant from a highly and homogeneously resistant strain which had a Tn551 insertion near or within the PBP 2a gene and thus did not produce PBP 2a. With this mutant used as the recipient, genetic transformation of the methicillin resistance gene was repeated with DNA isolated either from highly and homogeneously resistant strains or from heterogeneous (low-resistance) strains. All transformants obtained expressed high and homogeneous resistance and produced PBP 2a irrespective of the resistance level of the DNA donors. Our findings suggest that (i) the methicillin resistance locus is identical to the structural gene for PBP 2a, (ii) although the ability to produce PBP 2a is essential for resistance, the MICs for the majority of cells are not related to the cellular concentration of PBP 2a, and (iii) high MICs and homogeneous expression of resistance require the products of other distinct genetic elements as well.  相似文献   

19.
Methicillin-resistant Staphylococcus aureus (MRSA) is a global scourge, and treatment options are becoming limited. The MRSA phenotype reverts to that of beta-lactam-sensitive S. aureus when bacteria are grown at pH 5.0 in broth and, more importantly from a medical perspective (protracted, relapsing infections), after phagocytosis by macrophages, where the bacteria thrive in the acidic environment of phagolysosomes. The central factor for the MRSA phenotype is the function of the penicillin-binding protein (PBP) 2a, which maintains transpeptidase activity while being poorly inhibited by beta-lactams because of a closed conformation of its active site. We document herein by binding, acylation/deacylation kinetics, and circular dichroism spectroscopy with purified PBP 2a that at acidic pH (i) beta-lactams interact with PBP 2a more avidly; (ii) the non-covalent pre-acylation complex exhibits a lower dissociation constant and an increased rate of acyl-enzyme formation (first-order rate constant) without change in hydrolytic deacylation rate; and (iii) PBP 2a undergoes a conformational change in the presence of the antibiotic consistent with the opening of the active site from the closed conformation. These observations argue that PBP 2a most likely evolved for its physiological function at pH 7 or higher by adopting a closed conformation, which is not maintained at acidic pH. Although at the organism level the effect of acidic pH on other biological processes in MRSA could not be discounted, our report should provide the impetus for closer examination of the properties of PBP 2a at low pH and thereby identifying novel points of intervention in combating this problematic organism.  相似文献   

20.
The gene pbpC from Staphylococcus aureus was sequenced: it encodes a 691-amino-acid protein with all of the conserved motifs of a class B high-molecular-weight penicillin-binding protein (PBP), including the transpeptidase conserved motifs SXXK, SXN, and KTG. Insertional inactivation of pbpC and introduction of the intact gene in a laboratory mutant missing PBP 3 showed that the pbpC gene encodes the staphylococcal PBP 3. Inactivation of pbpC caused no detectable change in the muropeptide composition of cell wall peptidoglycan and had only minimum, if any, effect on growth rates, but caused a small but significant decrease in rates of autolysis. Cells of abnormal size and shape and disoriented septa were produced when bacteria with inactivated pbpC were grown in the presence of a sub-MIC of methicillin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号