首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postsynaptic density (PSD) is a protein supramolecule lying underneath the postsynaptic membrane of excitatory synapses and has been implicated to play important roles in synaptic structure and function in mammalian central nervous system. Here, PSDs were isolated from two distinct regions of porcine brain, cerebral cortex and cerebellum. SDS-PAGE and Western blotting analyses indicated that cerebral and cerebellar PSDs consisted of a similar set of proteins with noticeable differences in the abundance of various proteins between these samples. Subsequently, protein localization in these PSDs was analyzed by using the Nano-Depth-Tagging method. This method involved the use of three synthetic reagents, as agarose beads whose surface was covalently linked with a fluorescent, photoactivable, and cleavable chemical crosslinker by spacers of varied lengths. After its application was verified by using a synthetic complex consisting of four layers of different proteins, the Nano-Depth-Tagging method was used here to yield information concerning the depth distribution of various proteins in the PSD. The results indicated that in both cerebral and cerebellar PSDs, glutamate receptors, actin, and actin binding proteins resided in the peripheral regions within ~ 10 nm deep from the surface and that scaffold proteins, tubulin subunits, microtubule-binding proteins, and membrane cytoskeleton proteins found in mammalian erythrocytes resided in the interiors deeper than 10 nm from the surface in the PSD. Finally, by using the immunoabsorption method, binding partner proteins of two proteins residing in the interiors, PSD-95 and α-tubulin, and those of two proteins residing in the peripheral regions, elongation factor-1α and calcium, calmodulin-dependent protein kinase II α subunit, of cerebral and cerebellar PSDs were identified. Overall, the results indicate a striking similarity in protein organization between the PSDs isolated from porcine cerebral cortex and cerebellum. A model of the molecular structure of the PSD has also been proposed here.  相似文献   

2.
Composition of the synaptic PSD-95 complex   总被引:2,自引:0,他引:2  
Postsynaptic density protein 95 (PSD-95), a specialized scaffold protein with multiple protein interaction domains, forms the backbone of an extensive postsynaptic protein complex that organizes receptors and signal transduction molecules at the synaptic contact zone. Large, detergent-insoluble PSD-95-based postsynaptic complexes can be affinity-purified from conventional PSD fractions using magnetic beads coated with a PSD-95 antibody. In the present study purified PSD-95 complexes were analyzed by LC/MS/MS. A semiquantitative measure of the relative abundances of proteins in the purified PSD-95 complexes and the parent PSD fraction was estimated based on the cumulative ion current intensities of corresponding peptides. The affinity-purified preparation was largely depleted of presynaptic proteins, spectrin, intermediate filaments, and other contaminants prominent in the parent PSD fraction. We identified 525 of the proteins previously reported in parent PSD fractions, but only 288 of these were detected after affinity purification. We discuss 26 proteins that are major components in the PSD-95 complex based upon abundance ranking and affinity co-purification with PSD-95. This subset represents a minimal list of constituent proteins of the PSD-95 complex and includes, in addition to the specialized scaffolds and N-methyl-d-aspartate (NMDA) receptors, an abundance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, small G-protein regulators, cell adhesion molecules, and hypothetical proteins. The identification of two Arf regulators, BRAG1 and BRAG2b, as co-purifying components of the complex implies pivotal functions in spine plasticity such as the reorganization of the actin cytoskeleton and insertion and retrieval of proteins to and from the plasma membrane. Another co-purifying protein (Q8BZM2) with two sterile alpha motif domains may represent a novel structural core element of the PSD.  相似文献   

3.
Horng WC  Yen YH  Chang YC 《Proteomics》2008,8(22):4642-4646
A solid phase- and chemical crosslinking-based technology was developed for determining the depths at which various protein constituents reside in a supramolecule. The usefulness of this technology was verified by trials using a synthetic three-protein complex on glass coverslips. This technology was further applied to investigate the localization of seven major protein components in the postsynaptic density, a landmark supramolecule of the excitatory synapses in mammalian brains. The technology reported here will supplement the already powerful proteomic methodologies in studying the structure/function relationships of supramolecules.  相似文献   

4.
Molecular chaperones are large proteins or protein complexes from which many proteins require assistance in order to fold. One unique property of molecular chaperones is the cavity they provide in which proteins fold. The interior surface residues which make up the cavities of molecular chaperone complexes from different organisms has recently been identified, including the well-studied GroEL-GroES chaperonin complex found in Escherichia coli. It was found that the interior of these protein complexes is significantly different than other protein surfaces and that the residues found on the protein surface are able to resist protein adsorption when immobilized on a surface. Yet it remains unknown if these residues passively resist protein binding inside GroEL-GroEs (as demonstrated by experiments that created synthetic mimics of the interior cavity) or if the interior also actively stabilizes protein folding. To answer this question, we have extended entropic models of substrate protein folding inside GroEL-GroES to include interaction energies between substrate proteins and the GroEL-GroES chaperone complex. This model was tested on a set of 528 proteins and the results qualitatively match experimental observations. The interior residues were found to strongly discourage the exposure of any hydrophobic residues, providing an enhanced hydrophobic effect inside the cavity that actively influences protein folding. This work provides both a mechanism for active protein stabilization in GroEL-GroES and a model that matches contemporary understanding of the chaperone protein.  相似文献   

5.
Synapses are highly organized, specific structures assuring rapid and highly selective interactions between cells. Synaptic transmission involves the release of neurotransmitter from presynaptic neurons and its detection by specific ligand-gated ion channels at the surface membrane of postsynaptic neurons. The protenomic analysis shows that for self-formation and functioning of synapses nearly 2000 proteins are involved in mammalian brain. The core complex in excitatory synapses includes glutamate receptors, potassium channels, CaMKII, scaffolding protein and actin. These proteins exist as part of a highly organized protein complex known as the postsynaptic density (PSD). The coordinated functioning of the different PSD components determines the strength of signalling between the pre- and postsynaptic neurons. Synaptic plasticity is regulated by changes in the amount of receptors on the postsynaptic membrane, changes in the shape and size of dendritic spines, posttranslational modification of PSD components, modulation kinetics of synthesis and degradation of proteins. Integration of these processes leads to long-lasting changes in synaptic function and neuronal networks underlying learning-related plasticity, memory and information treatment in nervous system of multicellular organisms.  相似文献   

6.
A widely used method for the preparation of postsynaptic density (PSD) fractions consists of treatment of synaptosomal membranes with Triton X-100 and further purification by density gradient centrifugation. In the present study, the purity of this preparation was assessed by electron microscopic analysis. Thin-section and rotary shadow immuno-electron microscopy of the Triton X-100-derived PSD fraction shows many PSD-95-positive structures that resemble in situ PSDs in shape and size. However, the fraction also includes contaminants such as CaMKII clusters, spectrin filaments and neurofilaments. We used magnetic beads coated with an antibody against PSD-95 to further purify PSD-95-containing complexes from the Triton-derived PSD fraction. Biochemical analysis of the affinity-purified material shows a substantial reduction in the astrocytic marker glial fibrillary acidic protein and electron microscopic analysis shows mostly individual PSDs attached to magnetic beads. This preparation was used to assess the association of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-type glutamate receptors with the PSD-95-containing complex. AMPA receptors are demonstrated by immunoblotting to be present in the complex, although they do not co-purify exclusively with PSD-95, suggesting the existence of two pools of receptors, one associated with the PSD-95 scaffold and the other not. Of the AMPA receptor-anchoring proteins tested, SAP-97 is present in the affinity-purified preparation whereas GRIP is found only in trace amounts. These results imply that a subpopulation of AMPA receptors is anchored to the PSD-95-containing scaffold through interaction of GluR1 with SAP-97.  相似文献   

7.
Synaptic plasticity represents the long lasting activity-related strengthening or weakening of synaptic transmission, whose well-characterized types are the long term potentiation and depression. Despite this classical definition, however, the molecular mechanisms by which synaptic plasticity may occur appear to be extremely complex and various. The post-synaptic density (PSD) of glutamatergic synapses is a major site for synaptic plasticity processes and alterations of PSD members have been recently implicated in neuropsychiatric diseases where an impairment of synaptic plasticity has also been reported. Among PSD members, scaffolding proteins have been demonstrated to bridge surface receptors with their intracellular effectors and to regulate receptors distribution and localization both at surface membranes and within the PSD. This review will focus on the molecular physiology and pathophysiology of synaptic plasticity processes, which are tuned by scaffolding PSD proteins and their close related partners, through the modulation of receptor localization and distribution at post-synaptic sites. We suggest that, by regulating both the compartmentalization of receptors along surface membrane and their degradation as well as by modulating receptor trafficking into the PSD, postsynaptic scaffolding proteins may contribute to form distinct signaling micro-domains, whose efficacy in transmitting synaptic signals depends on the dynamic stability of the scaffold, which in turn is provided by relative amounts and post-translational modifications of scaffolding members. The putative relevance for neuropsychiatric diseases and possible pathophysiological mechanisms are discussed in the last part of this work.  相似文献   

8.
NMDA (N-methyl-D-aspartate) receptors (NMDARs) are targeted to dendrites and anchored at the post-synaptic density (PSD) through interactions with PDZ proteins. However, little is known about how these receptors are sorted from the endoplasmic reticulum and Golgi apparatus to the synapse. Here, we find that synapse-associated protein 102 (SAP102) interacts with the PDZ-binding domain of Sec8, a member of the exocyst complex. Our results show that interactions between SAP102 and Sec8 are involved in the delivery of NMDARs to the cell surface in heterologous cells and neurons. Furthermore, they suggest that an exocyst-SAP102-NMDAR complex is an important component of NMDAR trafficking.  相似文献   

9.
Membrane-bound receptors such as tyrosine kinases and ionotropic receptors are associated with large protein networks structured by protein-protein interactions involving multidomain proteins. Although these networks have emerged as a general mechanism of cellular signalling, much less is known about the protein complexes associated with G-protein-coupled receptors (GPCRs). Using a proteomic approach based on peptide affinity chromatography followed by mass spectrometry and immunoblotting, we have identified 15 proteins that interact with the C- terminal tail of the 5-hydroxytryptamine 2C (5-HT(2C)) receptor, a GPCR. These proteins include several synaptic multidomain proteins containing one or several PDZ domains (PSD95 and the proteins of the tripartite complex Veli3-CASK-Mint1), proteins of the actin/spectrin cytoskeleton and signalling proteins. Coimmunoprecipitation experiments showed that 5-HT(2C) receptors interact with PSD95 and the Veli3-CASK-Mint1 complex in vivo. Electron microscopy also indicated a synaptic enrichment of Veli3 and 5-HT(2C) receptors and their colocalization in microvilli of choroidal cells. These results indicate that the 5-HT(2C) receptor is associated with protein networks that are important for its synaptic localization and its coupling to the signalling machinery.  相似文献   

10.
The postsynaptic density (PSD) is a cytoskeletal specialization within the postsynaptic membrane of a neuron that helps to concentrate and organize neurotransmitter receptors at a chemical synapse. The total number of receptors within the PSD, which is a major factor in determining the physiological strength or weight of a synapse, fluctuates due to the surface diffusion of receptors into and out of the PSD, and the interactions of receptors with scaffolding proteins and cytoskeletal elements within the PSD. In this article, we present a stochastic model of protein receptor trafficking at the PSD that takes into account these various processes. The PSD is treated as a stochastically gated corral, which contributes a source of extrinsic or environmental noise that supplements the intrinsic noise arising from small receptor numbers. Using a combination of stochastic analysis and Monte Carlo simulations, we determine the time-dependent variation in the mean and variance of synaptic receptor numbers for a variety of initial conditions that simulate fluorescence recovery after photobleaching experiments, and indicate how such data might be used to infer certain properties of the PSD.  相似文献   

11.
The postsynaptic density (PSD) is a dynamic multi-protein complex attached to the postsynaptic membrane composed of several hundred proteins such as receptors and channels, scaffolding and adaptor proteins, cell-adhesion proteins, cytoskeletal proteins, G-proteins and their modulators and signaling molecules including kinases and phosphtases. This review focuses on the prominent PSD scaffolds proteins such as members of the MAGUK (membrane-associated guanylyl kinase), Shank (SH3 domain and ankyrin repeat-containing protein) and Homer families. These molecules interact simultaneously with different kinds of receptors and modulate their function by linking the receptors to downstream signaling events. For example PSD 95, a main member of MAGUK family, interacts directly with carboxyl termini of NMDA receptor subunits and clusters them to the postsynaptic membrane. In addition, PSD 95 is involved in binding and organizing proteins connected with NMDAR signaling. Based on the modular character and ability to form multiproteins interactions, MAGUK, Shank and Homer are perfectly suited to act as a major scaffold in postsynaptic density.  相似文献   

12.
The beta 2-adrenergic receptors of the human epidermoid carcinoma A431 cells reside on two polypeptide chains revealed by photoaffinity labelling with [125I]iodocyanopindolol-diazirine. These proteins correspond to two distinct populations of N-asparagine-linked glycoproteins: the 55-52 kDa molecules are associated with complex carbohydrate chain(s), the 65-63 kDa component with polymannosidic carbohydrate chain(s). Both types of receptors are present in preconfluent cells, but only the polymannosidic type is found in the postconfluent cells. Moreover, complex chains appear to be associated with the receptors with the highest affinity for (-)-isoproterenol and polymannosidic chains with the receptors with the lowest affinity for this agonist. the carbohydrate moiety of the beta-adrenergic receptor is involved in the expression and function of the beta 2-adrenergic receptors at the surface of the A431 cells, since tunicamycin and monensin, complete and partial inhibitors of glycosylation respectively, diminish the number of binding sites at the cell surface and increase the total number of sites in the cell. In these conditions a diminution of cyclic AMP accumulation is also observed.  相似文献   

13.
Recently, we reported on the dual function of human ferritin heavy chain (hFTN-H) used for the fusion expression and solubility enhancement of various heterologous proteins: (1) high-affinity interaction with HSP70 chaperone DnaK and (2) formation of self-assembled supramolecules with limited and constant sizes. Especially the latter, the self-assembly function of hFTN-H is highly useful in avoiding the undesirable formation of insoluble macroaggregates of heterologous proteins in bacterial cytoplasm. In this study, using enhanced green fluorescent protein (eGFP) and several deletion mutants of Mycoplasma arginine deiminase (ADI132–410) as reporter proteins, we confirmed through TEM image analysis that the recombinant fusion proteins (hFTN-H::eGFP and hFTN-H::ADI132–410) formed intracellular spherical particles with nanoscale diameter (≈10 nm), i.e., noncovalently cross-linked supramolecules. Surprisingly, the supramolecular eGFP and ADI showed much enhanced stability in bioactivity. That is, the activity level was much more stably maintained for the prolonged period of time even at high temperature, at high concentration of Gdn–HCl, and in wide range of pH. The stability enhancement by supramolecular self-assembly may make it possible to utilize the protein supramolecules as novel means for drug delivery, enzymatic material conversion (biotransformation), protein chip/sensor, etc. where the maintenance of protein/enzyme stability is strictly required. Jin-Seung Park and Ji-Young Ahn contributed equally to this work.  相似文献   

14.
Protein constituents of the postsynaptic density (PSD) fraction were analysed using an integrated liquid chromatography (LC)-based protein identification system, which was constructed by coupling microscale two-dimensional liquid chromatography (2DLC) with electrospray ionization (ESI) tandem mass spectrometry (MS/MS) and an automated data analysis system. The PSD fraction prepared from rat forebrain was solubilized in 6 m guanidium hydrochloride, and the proteins were digested with trypsin after S-carbamoylmethylation under reducing conditions. The tryptic peptide mixture was then analysed with the 2DLC-MS/MS system in a data-dependent mode, and the resultant spectral data were automatically processed to search a genome sequence database for protein identification. In triplicate analyses, the system allowed assignments of 5264 peptides, which could finally be attributed to 492 proteins. The PSD contained various proteins involved in signalling transduction, including receptors, ion channel proteins, protein kinases and phosphatases, G-protein and related proteins, scaffold proteins, and adaptor proteins. Structural proteins, including membrane proteins involved in cell adhesion and cell-cell interaction, proteins involved in endocytosis, motor proteins, and cytoskeletal proteins were also abundant. These results provide basic data on a major protein set associated with the PSD and a basis for future functional studies of this important neural machinery.  相似文献   

15.
The Golgi matrix proteins GRASP65 and GRASP55 have recognized roles in maintaining the architecture of the Golgi complex, in mitotic progression and in unconventional protein secretion whereas, surprisingly, they have been shown to be dispensable for the transport of commonly used reporter cargo proteins along the secretory pathway. However, it is becoming increasingly clear that many trafficking machineries operate in a cargo-specific manner, thus we have investigated whether GRASPs may control the trafficking of selected classes of cargo. We have taken into consideration the C-terminal valine-bearing receptors CD8α and Frizzled4 that we show bind directly to the PSD95-DlgA-zo-1 (PDZ) domains of GRASP65 and GRASP55. We demonstrate that both GRASPs are needed sequentially for the efficient transport to and through the Golgi complex of these receptors, thus highlighting a novel role for the GRASPs in membrane trafficking. Our results open new perspectives for our understanding of the regulation of surface expression of a class of membrane proteins, and suggests the causal mechanisms of a dominant form of autosomal human familial exudative vitreoretinopathy that arises from the Frizzled4 mutation involving its C-terminal valine.  相似文献   

16.
Phospholipase C-beta isozymes that are activated by G protein-coupled receptors (GPCR) and heterotrimeric G proteins carry a PSD-95/Dlg/ZO-1 (PDZ) domain binding motif at their C terminus. Through interactions with PDZ domains, this motif may endow the PLC-beta isozyme with specific roles in GPCR signaling events that occur in compartmentalized regions of the plasma membrane. In this study, we identified the interaction of PLC-beta3 with Shank2, a PDZ domain-containing multimodular scaffold in the postsynaptic density (PSD). The C terminus of PLC-beta3, but not other PLC-beta isotypes, specifically interacts with the PDZ domain of Shank2. Homer 1b, a Shank-interacting protein that is linked to group I metabotropic glutamate receptors and IP3 receptors, forms a multiple complex with Shank2 and PLC-beta3. Importantly, microinjection of a synthetic peptide specifically mimicking the C terminus of PLC-beta3 markedly reduces the mGluR-mediated intracellular calcium response. These results demonstrate that Shank2 brings PLC-beta3 closer to Homer 1b and constitutes an efficient mGluR-coupled signaling pathway in the PSD region of neuronal synapses.  相似文献   

17.
Transmembrane signaling systems relay information from the exterior to the interior of a cell, through a series of complex protein-protein interactions and second messenger cascades. One such system consists of the G-protein-coupled receptors, which interact with G proteins upon ligand binding, and in turn activate an effector molecule. The receptor is the first component in this signaling cascade and is subject to considerable regulation. Recent studies have shown that these regulatory events can occur at the levels of receptor protein modification and receptor gene expression. Interestingly, some of these processes appear to be mediated by the same second messenger systems that these receptors activate, which leads to various forms of positive and negative feedback regulation.  相似文献   

18.
The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD.  相似文献   

19.
The planar cell polarity (PCP) protein, Prickle (Pk), is conserved in invertebrates and vertebrates, and regulates cellular morphogenesis and movement. Vertebrate Pk consists of at least two family members, Pk1 and Pk2, both of which are expressed in the brain; however, their localization and function at synapses remain elusive. Here, we show that Pk2 is expressed mainly in the adult brain and is tightly associated with the postsynaptic density (PSD) fraction obtained by subcellular fractionation. In primary cultured rat hippocampal neurons, Pk2 is colocalized with PSD-95 and synaptophysin at synapses. Moreover, immunoelectron microcopy shows that Pk2 is localized at the PSD of asymmetric synapses in the hippocampal CA1 region. Biochemical assays identified that Pk2 forms a complex with PSD proteins including PSD-95 and NMDA receptor subunits via the direct binding to the C-terminal guanylate kinase domain of PSD-95. These results indicate that Pk2 is a novel PSD protein that interacts with PSD-95 and NMDA receptors through complex formations in the brain.  相似文献   

20.
An important aspect of the function of the membrane-associated cytoskeleton has been suggested to be to trap and retain selected transmembrane proteins at points on the cell surface specified by cell adhesion molecules. In the process, cell adhesion molecules are cross-linked to each other, and so junctional complexes are strengthened. In this short review, we will discuss recent advances in understanding the role of this "accumulation machine" in postsynaptic structures. Function in the brain depends on correct ordering of synaptic intercellular junctions, and in particular the recruitment of receptors and other apparatus of the signalling system to postsynaptic membranes. Spectrin has long been known to be a component of postsynaptic densities, and recent advances in molecular cloning indicate that beta spectrins at PSDs are all "long" C-terminal isoforms characterised by pleckstrin homology domains. Isoforms of protein 4.1 are also present at synapses. All four 4.1 proteins are represented in PSD preparations, but it is 4.1R that is most enriched in PSDs. 4.1R binds to several proteins enriched in PSDs, including the characteristic PSD intermediate filament, alpha-internexin. Both 4.1 and spectrin interact with ionotropic glutamate receptors (AMPA and NMDA receptors, respectively): 4.1 stabilises AMPA receptors on the cell surface. By linking these receptors to the cytoskeletal and cell adhesion molecules that specify glutamatergic synapses, the membrane protein accumulation machine is suggested to direct the formation of postsynaptic signalling complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号