首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is to characterize the cell proliferation and proliferating cell types during three-dimensional reconstitution of eccrine sweat glands. Eccrine sweat gland cells suspended in Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 1, 2, 4, 6, 8, 14, 21, 28, 35 and 42 days post-implantation, Matrigel plugs were immunostained for Ki67, to detect cycling cells, and the Ki67 labeling index at different time points was calculated. Three pairs of antibodies, Ki67/K7, Ki67/K14 and Ki67/α-SMA, were used to identify proliferating cell types in the plugs, on days 28, 35 and 42, by immunofluorescence double staining. The Ki67 labeling index on the first day of implantation was 30.53%, rapidly reached a peak value of 81.43% at 2 days post-implantation, and then decreased gradually to a low of 2.87% at 42 days. Double immunofluorescence staining showed that K14/Ki67 double-stained cells accounted for 80% of the Ki67-positive cells, whereas K7/Ki67 and α-SMA/Ki67 double-stained cells each accounted for 10% of the Ki67-positive population on days 28, 35, or 42 post-implantation. We conclude that eccrine sweat gland cells rapidly enter the cell cycle after implantation, but quickly show decreased cell proliferation and increased cell differentiation.  相似文献   

2.
Interactions between the extracellular matrix (ECM) and epithelial cells are necessary for the proper organization and function of the epithelium. In the present study, we show that human eccrine sweat gland epithelial cells cultured in matrigel, a representation of ECM components, constitute a good model for studying three-dimensional reconstruction, wound repair and regeneration and differentiation of the human eccrine sweat gland. In matrigel, epithelial cells from the human eccrine sweat gland form tubular-like structures and then the tubular-like structures coil into sphere-like shapes that structurally resemble human eccrine sweat glands in vivo. One sphere-like shape can be linked to another sphere-like shape or to a cell monolayer via tubular-like structures. Hematoxylin and eosin staining has revealed that the tubular-like structures have a single layer or stratified epithelial cells located peripherally and a lumen at the center, similar to the secretory part or duct part, respectively, of the eccrine sweat gland in sections of skin tissue. Immunohistochemical analysis of the cultures has demonstrated that the cells express CK7, CK19, epithelial membrane antigen and actin. Thus, matrigel promotes the organization and differentiation of epithelial cells from the human eccrine sweat gland into eccrine sweat gland tissues.  相似文献   

3.
Functional integrity of the regenerated tissues requires not only structural integrity but also vascularization and innervation. We previously demonstrated that the three-dimensional (3D) reconstructed eccrine sweat glands had similar structures as those of the native ones did, but whether the 3D reconstructed glands possessing vascularization and innervation was still unknown. In the study, Matrigel-embedded eccrine sweat gland cells were implanted under the inguinal skin. Ten weeks post-implantation, the vascularization, and innervation in the 10-week reconstructed eccrine sweat glands and native human eccrine sweat glands were detected by immunofluorescence staining. The results showed that the fluorescent signals of general neuronal marker protein gene product 9.5, adrenergic nerve fiber marker tyrosine hydroxylase, and cholinergic nerve fiber markers acetylcholinesterase and vasoactive intestinal peptide embraced the 3D reconstructed glands in circular patterns, as the signals appeared in native eccrine sweat glands. There were many CD31- and von Willebrand factor-positive vessels growing into the plugs. We demonstrated that the 3D reconstructed eccrine sweat glands were nourished by blood vessels, and we for the first time demonstrated that the engineering sweat glands were innervated by both cholinergic and adrenergic fibers. In conclusion, the 3D reconstructed eccrine sweat glands may have functions as the native ones do.  相似文献   

4.
Dipeptidyl peptidase IV (DPP4) is a peptidase whose inhibition is beneficial in Type II diabetes treatment. Several evidences suggest potential implication of DPP4 in skin disorders such as psoriasis, keloids and fibrotic skin diseases where its inhibition could also be beneficial. DPP4 expression in human skin was described mainly in dermal fibroblasts and a subset of keratinocytes in the basal layer. Of importance in the perspective of preclinical experimentation, DPP4 distribution in skin of non-human primate species has not been documented. This report evidences unexpected differences between a set of human and cynomolgus monkey skin samples revealing a major expression of DPP4 in eccrine sweat glands of cynomolgus monkeys but not in humans. This represents a unique distinctive feature compared to the conserved expression of dipeptidyl peptidases 8 and 9 and potential relevant DPP4 substrates such as neuropeptide Y (NPY) and receptors (NPY-receptor 1 and Neurokinin receptor). Finally the observation that cathepsin D, an unrelated protease, shows the opposite expression compared to DPP4 (present in human but not in cynomolgus monkey eccrine sweat glands) could indicate that human eccrine sweat glands evolved a divergent protease repertoire compared to non-human primates. These unexpected differences in the eccrine sweat glands protease repertoire will need to be confirmed extending the analysis to a major number of donors but could imply possible biochemical divergences, reflecting the functional evolution of the glands and the control of their activity. Our findings also demonstrate that non-human primates studies aiming at understanding DPP4 function in skin biology are not readily translatable to human.  相似文献   

5.
We studied the distribution of gamma-glutamyl transpeptidase (gamma-GT) by use of a monoclonal antibody (MAb) against human kidney gamma-GT in human sweat glands. In the eccrine sweat gland, the enzyme was localized along the luminal membrane and small apocrine extrusions of the superficial cells of the secretory portion. The intercellular canaliculi between basal cells were occasionally immunoreactive. In the secretory portion of the apocrine gland, luminal membrane and apocrine extrusions of various sizes and stages at the apices of the secretory cells exhibited positive reactions. Immunoreaction was also seen in the Golgi area of the cuboidal secretory cells. No positive reaction was observed in the myoepithelial cells of either gland or in the excretory duct cells.  相似文献   

6.
Both cholinergic and adrenergic stimulation can induce sweat secretion in human eccrine sweat glands, but whether cholinergic and adrenergic stimulation play same roles in rat eccrine sweat glands is still controversial. To explore the innervations, and adrenergic- and cholinergic-induced secretory response in developing and developed rat eccrine sweat glands, rat hind footpads from embryonic day (E) 15.5–20.5, postanal day (P) 1–14, P21 and adult were fixed, embedded, sectioned and subjected to immunofluorescence staining for general fiber marker protein gene product 9.5 (PGP 9.5), adrenergic fiber marker tyrosine hydroxylase (TH) and cholinergic fiber marker vasoactive intestinal peptide (VIP), and cholinergic- and adrenergic-induced sweat secretion was detected at P1–P21 and adult rats by starch-iodine test. The results showed that eccrine sweat gland placodes of SD rats were first appeared at E19.5, and the expression of PGP 9.5 was detected surrounding the sweat gland placodes at E19.5, TH at P7, and VIP at P11. Pilocarpine-induced sweat secretion was first detected at P16 in hind footpads by starch-iodine test. There was no measurable sweating when stimulated by alpha- or beta-adrenergic agonists at all the examined time points. We conclude that rat eccrine sweat glands, just as human eccrine sweat glands, co-express adrenergic and cholinergic fibers, but different from human eccrine sweat glands, cholinergic- rather than adrenergic-induced sweating plays a role in the developing and developed rat eccrine sweat glands.  相似文献   

7.
Determination of the niche for early‐stage cancer remains a challenging issue. Melanoma is an aggressive cancer of the melanocyte lineage. Early melanoma cells are often found in the epidermis around sweat ducts of human volar skin, and the skin pigmentation pattern is an early diagnostic sign of acral melanoma. However, the niche for melanoma precursors has not been determined yet. Here, we report that the secretory portion (SP) of eccrine sweat glands provide an anatomical niche for melanocyte–melanoma precursor cells. Using lineage‐tagged H2B‐GFP reporter mice, we found that melanoblasts that colonize sweat glands during development are maintained in an immature, slow‐cycling state but renew themselves in response to genomic stress and provide their differentiating progeny to the epidermis. FISH analysis of human acral melanoma expanding in the epidermis revealed that unpigmented melanoblasts with significant cyclin D1 gene amplification reside deep in the SP of particular sweat gland(s). These findings indicate that sweat glands maintain melanocyte–melanoma precursors in an immature state in the niche and explain the preferential distribution of early melanoma cells around sweat glands in human volar skin.  相似文献   

8.
Human skin harbours multiple different stem cell populations. In contrast to the relatively well-characterized niches of epidermal and hair follicle stem cells, the localization and niches of stem cells in other human skin compartments are as yet insufficiently investigated. Previously, we had shown in a pilot study that human sweat gland stroma contains Nestin-positive stem cells. Isolated sweat gland stroma-derived stem cells (SGSCs) proliferated in vitro and expressed Nestin in 80% of the cells. In this study, we were able to determine the precise localization of Nestin-positive cells in both eccrine and apocrine sweat glands of human axillary skin. We established a reproducible isolation procedure and characterized the spontaneous, long-lasting multipotent differentiation capacity of SGSCs. Thereby, a pronounced ectodermal differentiation was observed. Moreover, the secretion of prominent cytokines demonstrated the immunological potential of SGSCs. The comparison to human adult epidermal stem cells (EpiSCs) and bone marrow stem cells (BMSCs) revealed differences in protein expression and differentiation capacity. Furthermore, we found a coexpression of the stem cell markers Nestin and Iα6 within SGSCs and human sweat gland stroma. In conclusion the initial results of the pilot study were confirmed, indicating that human sweat glands are a new source of unique stem cells with multilineage differentiation potential, high proliferation capacity and remarkable self renewal. With regard to the easy accessibility of skin tissue biopsies, an autologous application of SGSCs in clinical therapies appears promising.  相似文献   

9.
Mammals have two kinds of sweat glands, apocrine and eccrine, which provide for thermal cooling. In this paper we describe the distribution and characteristics of these glands in selected mammals, especially primates, and reject the suggested development of the eccrine gland from the apocrine gland during the Tertiary geological period. The evidence strongly suggests that the two glands, depending on the presence or absence of fur, have equal and similar functions among mammals; apocrine glands are not primitive. However, there is a unique and remarkable thermal eccrine system in humans; we suggest that this system evolved in concert with bipedalism and a smooth hairless skin.Iowa Quaternary Studies Contribution No. 47  相似文献   

10.
Secretory coils and ducts are two components of eccrine sweat glands with different structures and functions. In our previous study, we combined keratins and α-SMA to distinguish between secretory coils and ducts. However, the key deficiency of the method was that none of the antibodies used was specific for ducts. In this study, we first examined the co-localization of K5/K7, α-SMA/K14, K7/S100P and α-SMA/S100A2 by double-immunofluorescence staining to confirm the localization of S100P and S100A2 in native human eccrine sweat glands, and second we identified secretory coil-like and duct-like structures in the 3D reconstituted eccrine sweat gland spheroids by double-immunofluorescence staining for K7/S100P and α-SMA/S100A2. In native human eccrine sweat glands, S100A2 immunoreactivity was confined to the outer layer and S100P to the inner layer of the duct. In 12-week Matrigel plugs containing eccrine sweat gland cells, double-immunofluorescence staining for K7/S100P and α-SMA/S100A2 could easily distinguish duct-like structures from secretory coil-like structures. We conclude that S100A2 and S100P can be used as specific duct markers in eccrine sweat glands, and combined use of S100P or S100A2 with keratins enables easy to distinction between secretory coils and ducts.  相似文献   

11.
Epidermal growth factor (EGF) is secreted into sweat from secretory cells of human sweat glands. The function of EGF in sweat is poorly understood. The biological function of EGF is exerted by the binding of EGF to the receptor (EGFR) and its activation. Therefore, we immunohistochemically localized the activated form of EGFR in human eccrine and apocrine sweat glands to assess the functional importance of the EGF-EGFR system in human sweat glands. Frozen sections of human skin were stained with a monoclonal antibody (MAb) specific for tyrosine-phosphorylated (activated) EGFR and with an MAb that stains both activated and non-activated EGFR. In the secretory portion of eccrine sweat glands, nuclei of the secretory cells were stained with the anti-activated EGFR MAb. In coiled and straight portions of eccrine sweat ducts, nuclei of luminal and peripheral cells were stained with the antibody specific for activated EGFR. Luminal cell membranes and luminal cytoplasm of inner ductal cells possessed non-activated EGFR. In the secretory portion of apocrine sweat glands, activated EGFRs were present in cytoplasm and nuclei of secretory cells. These data suggest that EGF, already known to be present in the cytoplasm of secretory cells in eccrine and apocrine sweat glands, activates EGFR in the nuclei of secretory cells themselves in an intracrine manner. Because ductal cells do not express EGF, EGF in the sweat secreted from the secretory cells should activate EGFR in the ductal cells in a paracrine manner. (J Histochem Cytochem 49:597-601, 2001)  相似文献   

12.
Summary The distribution in immunoreactivities towards atrial natriuretic peptide, calcitonin gene-related peptide, galanin and substance P were demonstrated in human skin at the light and electron microscopic levels. Nerves immunoreactive to the first three of these peptides were found around eccrine sweat glands, whereas only a few positively-labelled nerve fibres could be seen around apocrine glands. At the ultrastructural level, immunoreactivity to the neuropeptides was localized in the large dense-cored vesicles of the nerve terminals. No immunoreactivity to substance P could be detected around sweat glands. In addition to these findings, the four types of immunoreactivity were seen in the thick preterminal nerve bundles.  相似文献   

13.
The basic structure and the physiological function of human sweat glands were reviewed. Histochemical and cytochemical techniques greatly contributed the elucidation of the ionic mechanism of sweat secretion. X-ray microanalysis using freeze-dried cryosections clarified the level of Na, K, and Cl in each secretory cell of the human sweat gland. Enzyme cytochemistry, immunohistochemistry and autoradiography elucidated the localization of Na,K-ATPase. These data supported the idea that human eccrine sweat is produced by the model of N-K-2Cl cotransport. Cationic colloidal gold localizes anionic sites on histological sections. Human eccrine and apocrine sweat glands showed completely different localization and enzyme sensitivity of anionic sites studied with cationic gold. Human sweat glands have many immunohistochemical markers. Some of them are specific to apocrine sweat glands, although many of them stain both eccrine and apocrine sweat glands. Histochemical techniques, especially immunohistochemistry using a confocal laser scanning microscope and in situ hybridization, will further clarify the relationship of the structure and function in human sweat glands.  相似文献   

14.
Localization of sex steroid receptors in human skin   总被引:10,自引:0,他引:10  
Sex steroid hormones are involved in regulation of skin development and functions as well as in some skin pathological events. To determine the sites of action of estrogens, androgens and progestins, studies have been performed during the recent years to accurately localize receptors for each steroid hormone in human skin. Androgen receptors (AR) have been localized in most keratinocytes in epidermis. In the dermis, AR was detected in about 10% of fibroblasts. In sebaceous glands, AR was observed in both basal cells and sebocytes. In hair follicles, AR expression was restricted to dermal papillar cells. In eccrine sweat glands, only few secretory cells were observed to express AR. Estrogen receptor (ER) alpha was poorly expressing, being restricted to sebocytes. In contrast, ERbeta was found to be highly expressed in the epidermis, sebaceous glands (basal cells and sebocytes) and eccrine sweat glands. In the hair follicle, ERbeta is widely expressed with strong nuclear staining in dermal papilla cells, inner sheath cells, matrix cells and outer sheath cells including the buldge region. Progesterone receptors (PR) staining was found in nuclei of some keratinocytes and in nuclei of basal cells and sebocytes in sebaceous glands. PR nuclear staining was also observed in dermal papilla cells of hair follicles and in eccrine sweat glands. This information on the differential localization of sex steroid receptors in human skin should be of great help for future investigation on the specific role of each steroid on skin and its appendages.  相似文献   

15.
Evolutionary origins of the mammary gland   总被引:1,自引:0,他引:1  
Because the mammary gland has no known homologue among the extant reptiles, attempts to reconstruct its evolution must focus on evidence from living mammals. Of the numerous structures that have been hypothesized to have given rise to the mammary gland, only three remain as plausible progenitors: sebaceous glands, eccrine glands and apocrine glands. Ancestral mammary glands are usually assumed to have produced a copious watery secretion like that of human eccrine sweat glands. However, in terms of anatomy, physiology, development and topographical distribution, mammary glands are more similar to apocrine and sebaceous glands than to typical eccrine glands. Nevertheless, each of the three populations of cutaneous glands exhibit specializations unlikely to be primitive for the mammary gland. The mammary gland either predated full differentiation of mammalian cutaneous glands or, more probably, evolved as a neomorphic mosaic that combined the properties of apocrine and sebaceous glands. Consequently, ancestral, prototypic lacteal glands may have had the capacity to synthesize and secrete small amounts of organic substances, as do sebaceous and apocrine glands of living mammals.  相似文献   

16.
The histochemistry and histology of the eccrine sweat gland in the rhesus monkey (Macaca mulatta) are described. The histochemical distribution and localization of enzymes and substrates are very similar to those found in the human; innervation is cholinergic. Active eccrine glands on the general body surface average 136 glands/cm2. Above the thermal neutral zone (TNZ), sweating is the major avenue for heat loss and the role of panting in dissipating heat is relatively insignificant. The intrahypothalamic administration of prostaglandin E1 (PGE1) suppresses sweating and leads to an increase in core temperature. A linear relation is found between local sweat rates on the general body surface and clamped hypothalamic temperature. Studies also provide direct support for the concept that brain temperature and skin temperature interact additively in the control of sweating in higher primates. The functional characteristics of eccrine sweating in the patas monkey (Erythocebus) are qualitatively similar to those in the rhesus monkey. The patas monkey maintains a relatively constant rectal temperature (37.6–38.4°C) when equilibrated to a wide range of ambient temperaures of 15–40°C. Eccrine sweating is the main effector system for heat dissipation above the TNZ. We emphasize here that evaporative heat loss that is due to sweating is related to both mean skin and mean body temperature and at 40°C is 40% higher than that recorded from the rhesus monkey. These results indicate that the patas monkey, because of its high sweating capacity and other similarities with the human eccrine system, is a most appropriate animal model for comparative studies of eccrine sweat gland function in primates in general.  相似文献   

17.
Epidermal basal cells invaginate into the dermis to form sweat ducts, which then grow downwards further to form secretory coils during the ontogenesis of eccrine sweat glands, but the time course of differentiation of different cell types in 3D-reconstructed eccrine sweat glands remain unclear. In this study, secretory cell-specific marker K7, clear secretory cell-specific marker CA II, dark secretory cell-specific marker GCDFP-15, myoepithelial cell-specific marker α-SMA, inner duct cell-specific marker S100P and outer duct cell-specific marker S100A2 were detected by immunofluorescence staining. The results showed that S100P and S100A2 were first detected at 2 weeks post implantation, K7 and α-SMA at 3 weeks, and GCDFP-15 and CA II at 4 weeks. The differentiation of ducts preceded secretory coils in 3D-reconstructed eccrine sweat glands. After 8 weeks post implantation, the distribution of these markers in 3D-reconstructed eccrine sweat glands was similar to that in native ones, and the percentage of the 3D-reconstructed glands expressing these markers maintained steady. We conclude that although the 3D-reconstructed and native eccrine sweat glands originated from different cells, the differentiation of different cell types in 3D-reconstructed eccrine sweat glands parallels the sequence observed during embryonic development.  相似文献   

18.
Analogues of human erythrocyte protein 4.1 have been examined in the human skin by immunochemical techniques using anti-human erythrocyte protein 4.1 antibodies. Immunoblot analysis revealed that human epidermis contains 4.1-like proteins of 80 kDa and 78 kDa that cross react with anti-protein 4.1 antibodies. Analysis with immunofluorescence microscopy revealed that the plasma membrane of the human epidermal keratinocyte was stained intensively in the basal cells, whereas spinous cells were moderately stained. It is noted that eccrine sweat gland cells and ductal cells were also stained in the peripheral cytoplasma. Taken together, these results demonstrate that 4.1-like proteins are present in human epidermal keratinocytes, eccrine sweat gland cells and ductal cells. The present findings enable us to suggest that a membrane skeletal protein lattice might exist in these cells.  相似文献   

19.
It is well known that eccrine sweating is attenuated in patients with atopic dermatitis (AD). We have reported by using proteome analysis that gross cystic disease fluid protein 15 (GCDFP15), a substance secreted from eccrine sweat glands, is decreased in tape-stripped stratum corneum (SC) samples from AD patients. The aim of this study was to evaluate GCDFP15 production by eccrine glands with SC samples and to assess sweating in AD. SC samples were obtained from 51 healthy control (HC) and 51 AD individuals. Sweat samples were from 18 HC and 12 AD subjects. GCDFP15 was quantified by ELISA. By immunohistochemistry, the expression of GCDFP15 in eccrine glands was examined in normal and AD skin specimens. To identify GCDFP15-producing cells, double immunofluorescence staining for GCDFP15 and S100 protein was performed in frozen sections. To address the mechanism underlying the decreased eccrine sweating in AD patients, we examined the expression of cholinergic receptor M3 (CHRM3), a receptor for acetylcholine-induced sweating, in eccrine sweat glands. The amounts of GCDFP15 in the SC extracts were significantly lower in AD than HC (P < 0.0001). The sweat samples from AD patients also had lower levels of GCDFP15 concentration (P < 0.05). Immunohistochemistry showed positive GCDFP15 staining in the eccrine gland secretory cells and the ductal and acrosyringial lumen in normal skin, but AD lacked clear staining. Immunofluorescence staining revealed that GCDFP15 was co-expressed with S100 protein, suggesting that the clear cell of eccrine glands produces GCDFP15. Finally, we found that the expression of CHRM3 was depressed in AD, suggesting contribution to the low sweating. The SC of AD patients contains a low amount of GCDFP15 due to both low sweating and low GCDFP15 concentration in the sweat. GCDFP15 in SC is a potential marker for dysregulated sweating in AD.  相似文献   

20.
Summary Analogues of human erythrocyte protein 4.1 have been examined in the human skin by immunochemical techniques using anti-human erythrocyte protein 4.1 antibodies. Immunoblot analysis revealed that human epidermis contains 4.1-like proteins of 80 kDa and 78 kDa that cross react with anti-protein 4.1 antibodies.Analysis with immunofluorescence microscopy revealed that the plasma membrane of the human epidermal keratinocyte was stained intensively in the basal cells, whereas spinous cells were moderately stained. It is noted that eccrine sweat gland cells and ductal cells were also stained in the peripheral cytoplasma. Taken together, these results demonstrate that 4.1-like proteins are present in human epidermal keratinocytes, eccrine sweat gland cells and ductal cells. The present findings enable us to suggest that a membrane skeletal protein lattice might exist in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号