首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross‐tutored by Bengalese finches were studied. Single‐unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information (MI), response reliability, mean spike rate, fluctuations in time‐varying spike rate, distributions of time‐varying spike rates, and neural discrimination of individual songs. MI quantifies a response's capacity to encode information about a stimulus. In midbrain and forebrain neurons, MI was significantly higher in normal zebra finch neurons than in Bengalese finch and cross‐tutored zebra finch neurons, but not between Bengalese finch and cross‐tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. MI did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and MI were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 235–252, 2010.  相似文献   

2.
The relationship between body size and vocalization parameters has been studied in many animal species. In insect species, however, the effect of body size on song frequency has remained unclear. Here we analyzed the effect of body size on the frequency spectra of mating songs produced by the two-spotted cricket, Gryllus bimaculatus. We recorded the calling songs and courtship songs of male crickets of different body sizes. The calling songs contained a frequency component that peaked at 5.7 kHz. On the other hand, courtship songs contained two frequency components that peaked at 5.8 and 14.7 kHz. The dominant frequency of each component in both the calling and courtship songs was constant regardless of body size. The size of the harp and mirror regions in the cricket forewings, which are the acoustic sources of the songs, correlated positively with body size. These findings suggest that the frequency contents of both the calling and courtship songs of the cricket are unaffected by whole body, harp, or mirror size.  相似文献   

3.
The “banana cricket” is one of the preferred laboratory objects used for studying general and applied biological problems. However, the exact identity of this form remains obscure. Correct identification of the insects maintained in culture is vital for the correct prediction of the properties of the object in question and comparative studies. Analysis of acoustic signals showed that the banana cricket from the Moscow Zoo culture did not belong to the Gryllus assimilis (F.) group as it was assumed earlier. Analysis of acoustic signals and genitalia revealed similarity between the banana cricket and insects from the culture maintained at the Institute of Evolutionary Physiology and Biochemistry (IEPhB, St. Petersburg), which were supposed to be Gryllus argentinus (Sauss.). The calling songs and genitalia of crickets from both cultures differed from those of G. argentinus. Thus, the banana cricket and Gryllus sp. from the IEPhB culture belong to the same species but the exact identity of that species has not been yet determined.  相似文献   

4.
Male tree cricket (Orthoptera : Oecanthidae) calling songs are used by females to locate conspecific mates. Changes in these songs are crucial to speciation. Since certain features of cricket sounds are correlated with the structures of the stridulatory organs, changes in stridulatory organs must be correlated with changes in songs. Surprisingly, there is no established hypothesis to explain the mechanism of morphological change associated with changes in songs. Some alternative possibilities are explored, with reference to incidental effects. Available evidence suggests that stridulatory organs are genetically stable and that changes in these organs occur in steps rather than gradually.  相似文献   

5.
Females commonly prefer to mate with males that provide greater material benefits, which they often select using correlated male signals. When females select higher-benefit males based on correlated signals, however, males can potentially deceive females by producing exaggerated signals of benefit quality. The handicap mechanism can prevent lower-quality males from producing exaggerated signals, but cannot prevent cheating by higher-quality males that choose to withhold the benefit, and this poses a major problem for the evolution of female choice based on direct benefits. In a field cricket, Gryllus lineaticeps, females receive seminal fluid products from males with preferred songs that increase their fecundity and lifespan. We tested the hypothesis that female behaviour penalizes males that provide lower-quality benefits. When females were paired with males that varied in benefit quality but had experimentally imposed average songs, they were less likely to re-mate with males that provided lower-quality benefits in the initial mating. This type of conditional female re-mating may be a widespread mechanism that penalizes males that cheat on direct benefits.  相似文献   

6.
SYNOPSIS. Field crickets depend on acoustic organs to detectthe presence of potential predators as well as conspecific crickets.Predators are recognized largely on the basis of spectral frequenciesthat are contained in their acoustic signals. Puffs of air andvery low frequencies activate a cricket's cereal receptors andultrasonic frequencies activate their tympanal organs. Bothof these acoustic stimuli release "escape behavior," in theform of evasive movements. An identified neuron sensitive toultrasound is described. Crickets recognize singing conspecificsby both frequency and temporal properties of cricket songs;however species recognition requires specific temporal informationin calling songs. While previous studies have emphasized therole of songs on female behavior, males also recognize conspecificsongs; sexual differences in recognition behavior occur.  相似文献   

7.
In members of the cricket subfamily Eneopterinae (Orthoptera, Grylloidea), songs with powerful high-frequency (HF) harmonics have evolved, which likely represents a distinctive acoustic adaptation. In this study, we analysed or reanalysed the songs of the three eneopterine genera present in the Neotropics to evaluate whether they also possess high-amplitude HF components. We present new data and combine several lines of evidence to interpret or reinterpret the calling signals of a representative species for each genus. We used new recordings in order to detect and analyse potential HF components of the songs. Stridulatory files were measured, and stridulation was studied using high-speed video recordings. The results suggest that all eneopterine genera from the Neotropics use HFs to communicate, based on the rich harmonic content of their songs. Strikingly, the Neotropical eneopterines possess high dominant frequencies, recalling the patterns observed in the tribe Lebinthini, the most speciose tribe of the subfamily distributed in the Western Pacific region and in Southeast Asia: Ligypterus and Ponca show dominant harmonic peaks, whereas Eneoptera possesses unique features. The three species under study, however, deal differently with HFs.  相似文献   

8.
The anterior forebrain (AF) pathway of songbirds has an essential but poorly understood function during song learning, a process requiring auditory experience. Consistent with a role in processing auditory information, two nuclei of the AF, the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and Area X (X), contain some of the most complex auditory neurons known. In adult zebra finches, these neurons are strongly selective for both spectral and temporal properties of song: They respond more robustly to the bird's own song (BOS) than to songs of conspecific individuals, and they respond less well to BOS if it is played in reverse. lMAN and X neurons of young finches early in the process of song learning (30–45 days of age) are also song responsive, but lack the song and order selectivity present in adult birds. By an intermediate stage of learning (60 days), when birds have experience of both tutor song and their own developing (plastic) song, AF neurons have significant song and order selectivity for both tutor song and BOS (in this case, plastic song). The degree of BOS selectivity is still less than that found in adults, however. In addition, neurons at 60 days are heterogenous in their preference for BOS versus tutor song: Most prefer BOS, some prefer tutor song, and others respond equally to both songs. The selectivity of adult AF auditory neurons therefore arises rapidly during development from neurons that are initially unselective. These neurons are one of the clearest examples of experience-dependent acquisition of complex stimulus selectivity. Moreover, the neural selectivity for both BOS and tutor song at 60 days raises the possibility that experience of both songs during learning contributes to the properties of individual AF neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 694–709, 1997  相似文献   

9.
Field cricket species are ideal model organisms for the study of sexual selection because cricket calling songs, used to attract mating partners, are pronouncedly sexually dimorphic. However, few studies have focused on other sexually dimorphic traits of field crickets. The horn‐headed cricket, Loxoblemmus doenitzi, exhibits exaggerated sexual dimorphism in head shape: males have flat heads with triangular horns, while females lack horns. This study examines the relationship between horn length, male calling efforts and diet quality. Horn length was not found to be significantly correlated with calling efforts. When diet was manipulated for late‐stage nymphs, calling efforts in the group with poor‐quality diet treatment was significantly lower than that of crickets in the group with high‐quality diet treatment. However, horn length was not affected by diet quality. The implication of these results in the context of the evolution of multiple signals and sexual dimorphism is discussed.  相似文献   

10.
Abstract.  1. Predators, including insect parasitoids, often eavesdrop on prey signals, and as a result, predation can have important effects on the evolution of prey signalling behaviour.
2. The phonotactic parasitoid fly, Ormia ochracea , uses the calling songs of male field crickets to locate their field crickets hosts. In the western USA, this fly parasitises the variable field cricket, Gryllus lineaticeps . Previous work with one fly population suggested that female flies, like female field crickets, preferentially orient to male songs with higher chirp rates and longer chirp durations, although a limited range of male song types was used in this previous study. The current study, with a different fly population, used field-based, two-speaker choice tests to examine: (1) the effect of male chirp rate and chirp duration on fly attraction, using a natural range of song types; and (2) the relative importance of these song types in host selection by the flies.
3. Three lines of evidence suggested that chirp rate is more important than chirp duration in host selection. (a) The flies consistently preferred higher chirp rates but only sometimes preferred longer chirp durations. (b) The flies consistently preferred higher chirp rate/shorter chirp duration songs to lower chirp rate/longer chirp duration songs. (c) Preferences for longer chirp durations could be eliminated by increasing the amplitude of the less attractive song type, while preferences for higher chirp rates could only sometimes be eliminated by increasing the amplitude of the less attractive song type.
4. Fly predation may favour lower chirp rates and shorter chirp durations in G. lineaticeps , and may have resulted in stronger selection on chirp rate than on chirp duration.  相似文献   

11.
Vibrational communication is important for successful mating in various stink bugs species. The vibrational signals from males and females of Dichelops melacanthus Dallas (Hemiptera: Pentatomidae) are recorded from a nonresonant substrate (i.e. a loudspeaker membrane) to characterize the temporal and spectral properties of these vibrational signals, as well as on a resonant substrate (i.e. bean plants) to obtain information about how these signals are altered when they are transmitted through the plants. On the loudspeaker membrane, D. melacanthus males and females emit only one male or one female song, respectively. However, when the insects are placed on bean leaves, a more complex repertoire is recorded, with three different songs for each sex. The first female and male songs appear to have calling functions and the third male and female songs are emitted during courtship. The second female and male songs are emitted after the first song, although their functions in mating behaviour are not clear. The identified repertoire is similar to those of other Neotropical stink bugs, starting with songs 1 and 2 and developing into song 3. Frequency modulation is observed in the female songs recorded from the loudspeaker membrane and the plants. The signals recorded from plants present higher harmonic peaks compared with the signals recorded from the loudspeaker membrane. The presence of species and sex‐specific songs during mating confirms the important role of vibrational communication in mate location and recognition. The temporal and spectral characteristic signals are influenced by the substrate used to record the songs emitted by D. melacanthus.  相似文献   

12.
In principle it appears advantageous for single neurons to perform non-linear operations. Indeed it has been reported that some neurons show signatures of such operations in their electrophysiological response. A particular case in point is the Lobula Giant Movement Detector (LGMD) neuron of the locust, which is reported to locally perform a functional multiplication. Given the wide ramifications of this suggestion with respect to our understanding of neuronal computations, it is essential that this interpretation of the LGMD as a local multiplication unit is thoroughly tested. Here we evaluate an alternative model that tests the hypothesis that the non-linear responses of the LGMD neuron emerge from the interactions of many neurons in the opto-motor processing structure of the locust. We show, by exposing our model to standard LGMD stimulation protocols, that the properties of the LGMD that were seen as a hallmark of local non-linear operations can be explained as emerging from the dynamics of the pre-synaptic network. Moreover, we demonstrate that these properties strongly depend on the details of the synaptic projections from the medulla to the LGMD. From these observations we deduce a number of testable predictions. To assess the real-time properties of our model we applied it to a high-speed robot. These robot results show that our model of the locust opto-motor system is able to reliably stabilize the movement trajectory of the robot and can robustly support collision avoidance. In addition, these behavioural experiments suggest that the emergent non-linear responses of the LGMD neuron enhance the system''s collision detection acuity. We show how all reported properties of this neuron are consistently reproduced by this alternative model, and how they emerge from the overall opto-motor processing structure of the locust. Hence, our results propose an alternative view on neuronal computation that emphasizes the network properties as opposed to the local transformations that can be performed by single neurons.  相似文献   

13.
Male field crickets are subject to a delicate dilemma becausetheir songs simultaneously attract mates and acoustic predators.It has been suggested that in response, crickets have modifiedvarious temporal song parameters to become less attractiveto acoustic predators. We investigated whether crickets withchirping (versus trilling) song structures are less likely toattract acoustically orienting parasitoid flies. Experimentally,we evaluated the phonotactic quest of the parasitoid fly Ormiaochracea in response to broadcast cricket calls, presentedboth simultaneously (choice paradigm) and sequentially (no-choiceparadigm). Flight trajectories were recorded in darkness usingthree-dimensional active infrared video tracking. The flies showed remarkable phonotactic accuracy by landing directly onthe loudspeaker. The introduction of acoustic fragmentationthat resembles calls of many chirping crickets altered theflies' phonotactic accuracy only slightly. Our results documentdifferential attraction between trilling and chirping cricket songs and quantitatively demonstrate that chirping songs, ifpresented alone, do not impair the efficiency (temporal investmentand landing accuracy) of the flies' phonotactic quest. Thisstudy shows that song fragmentation is no safeguard againstacoustic parasitism. We conclude that, in general, a cricket may reduce predation only if its neighbors are acousticallymore conspicuous, chiefly by amplitude.  相似文献   

14.
Successful geographic range expansion by parasites and parasitoids may also require host range expansion. Thus, the evolutionary advantages of host specialization may trade off against the ability to exploit new host species encountered in new geographic regions. Here, we use molecular techniques and confirmed host records to examine biogeography, population divergence, and host flexibility of the parasitoid fly, Ormia ochracea (Bigot). Gravid females of this fly find their cricket hosts acoustically by eavesdropping on male cricket calling songs; these songs vary greatly among the known host species of crickets. Using both nuclear and mitochondrial genetic markers, we (a) describe the geographical distribution and subdivision of genetic variation in O. ochracea from across the continental United States, the Mexican states of Sonora and Oaxaca, and populations introduced to Hawaii; (b) demonstrate that the distribution of genetic variation among fly populations is consistent with a single widespread species with regional host specialization, rather than locally differentiated cryptic species; (c) identify the more‐probable source populations for the flies introduced to the Hawaiian islands; (d) examine genetic variation and substructure within Hawaii; (e) show that among‐population geographic, genetic, and host song distances are all correlated; and (f) discuss specialization and lability in host‐finding behavior in light of the diversity of cricket songs serving as host cues in different geographically separate populations.  相似文献   

15.
The effect of ultrasound on the attractiveness of acoustic mating signals   总被引:1,自引:0,他引:1  
Abstract. Previous laboratory studies ( Nolen & Hoy 1986b ) have shown that the phonotactic responses of flying crickets are influenced by the relative intensities of attractive (mating signal) and repulsive (predator) stimuli. At the functional level, these results suggest that predator cues (ultrasound) can change the attractiveness of a calling song. Using extracellular recordings from cervical connectives it was shown that, like other field crickets, Gryllus rubens (south-eastern field cricket) is sensitive to ultrasound. This ultrasonic sensitivity has probably evolved in response to predation pressure from echolocating bats. Using acoustic playback under field conditions, it was tested whether the relative attractiveness of two male calling songs was influenced by the simultaneous broadcast of ultrasound. A simulated male calling song of G. rubens was broadcast at two different intensities (109 and 103 dB) from two sound traps that caught flying crickets attracted to the songs. Simulated bat ultrasound was broadcast simultaneously with the high-intensity calling song (109 dB) and the relative catch in each of the two traps was measured. The intensity of the ultrasound was varied on different nights. The relative attractiveness of the high-intensity sound trap decreased significantly as the intensity of the ultrasound broadcast with it was increased. For the lowest of the ultrasound broadcast levels, the relative attractiveness did not differ from that expected for two calling songs broadcast without ultrasound. Thus, increased levels of simulated predation risk decreased the attractiveness of the calling song associated with it. These are the first field experiments to show that predation risk in the form of simulated bat ultrasound influences the phonotactic behaviour of flying crickets.  相似文献   

16.
Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain.  相似文献   

17.
Summary This paper presents recent work in computational modelling of diffusing gaseous neuromodulators in biological nervous systems. A variety of interesting and significant properties of such four dimensional neural signalling systems are demonstrated. It is shown that the morphology of the neuromodulator source plays a highly significant role in the diffusion patterns observed. The paper goes on to describe work in adaptive autonomous systems directly inspired by this: an exploration of the use of virtual diffusing modulators in robot nervous systems built from non-standard artificial neural networks. These virtual chemicals act over space and time modulating a variety of node and connection properties in the networks. A wide variety of rich dynamics are possible in such systems; in the work described here, evolutionary robotics techniques have been used to harness the dynamics to produce autonomous behaviour in mobile robots. Detailed comparative analyses of evolutionary searches, and search spaces, for robot controllers with and without the virtual gases are introduced. The virtual diffusing modulators are found to provide significant advantages.  相似文献   

18.
Acoustically-signaling animals such as crickets may experience interference from environmental noise, a particular concern given the rise in anthropogenic or other novel sources of sound. We examined the potential for acoustic interference of female phonotaxis to calling song in the Pacific field cricket (Teleogryllus oceanicus) by invasive coqui frogs (Eleutherodactylus coqui) in Hawaii. The frogs were introduced to Hawaii from Puerto Rico in the 1980s. When female crickets were exposed to male calling songs with and without simultaneous broadcast of a coqui chorus, they were equally likely to move toward the cricket song, regardless of the location of the frog sound (ground level or above ground). Unlike some species of frogs and birds, T. oceanicus do not appear to experience acoustic interference from an introduced signaler, even though the introduced species’ calls subjectively seem to be masking the crickets’ songs.  相似文献   

19.
Mating songs and preferences for these songs have to match for communication to function. Since this match restricts variation, understanding how phenotypic variation is introduced in communication systems is essential for understanding their evolution. The environment, through phenotypic plasticity or parental effects, is an important catalyst for phenotypic variation. In Kentucky, the cricket Gryllus rubens has one reproductive generation in the spring and one in the fall and the mating songs differ substantially between generations. I tested whether these differences in songs are the result of intergenerational (i.e., parental effects) or intragenerational phenotypic plasticity. To test for the role of parental effects on songs, I reared offspring of field-collected spring and fall females in a common garden environment and recorded their songs. None of the analyzed song characters differed between the sons of fall and spring parents, suggesting that parental effects do not play a role in song development. To test for the effect of phenotypic plasticity on songs, I reared juvenile and adult males in two separate sets of experiments at two different levels of temperature and daylength. Rearing temperature affected every analyzed song character: The higher adult rearing temperature (32°C) induced significantly faster pulse rates, shorter pulse durations, and higher dominant frequency compared with the lower rearing temperature (24°C). The higher juvenile temperature induced significantly shorter pulse durations, longer interval durations, and lower pulse duty cycles than the lower rearing temperature. Rearing photoperiod did not affect male song development. The changes induced by the temperature treatments paralleled those observed in the wild, suggesting that the seasonally different songs in Kentucky are primarily the result of seasonal temperatures. Possible evolutionary consequences of the temperature-related phenotypic plasticity are discussed.  相似文献   

20.
Many birds have songs with variable structure and sequences. In earlier studies, we characterized some features from the song structures of California Thrashers (Toxostoma redivivum). In the Thrashers, there were a large number of phrase types, dozens to hundreds and the songs that were sequences of these many phrases were not random, but show some structure referred to as syntax. For example, a syntactic rule might be that phrase type A can be followed by phrase type B, but not type C. We, along with others, have assumed that syntax is an important feature of songs. This paper describes an experimental attempt to determine that syntax is important to California Thrashers by recording the reaction of territorial thrashers to playbacks of other thrasher songs, some of which obeyed the syntax rules we had discovered while others violated those rules. We also obtained video recordings of their behaviour near the playback speakers. We observed differences in the reactions to the birds that heard these two types of playbacks. Resident males reacted to either playback type, but more strongly when the original order was preserved. We observed difference in their behavioural response to correct or altered syntax. This indicates that the syntax of their songs is perceived in territorial defence by the birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号