首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Division of labor is a hallmark of eusocial insects and their ecological success can be attributed to it. Honey bee division of labor proceeds along a stereotypical ontogenetic path based on age, modulated by various internal and external stimuli. Brood pheromone is a major social pheromone of the honey bee that has been shown to affect honey bee division of labor. It elicits several physiological and behavioral responses; notably, regulating the timing of the switch from performing in-hive tasks to the initiation of foraging. Additionally, brood pheromone affects future foraging choice. In honey bees, sucrose response threshold is a physiological correlate of age of first foraging and foraging choice. Brood pheromone has been shown to modulate sucrose response threshold in young bees, but its effects on sucrose response thresholds of bees in advanced behavioral states (foragers) are not known. In this study we examined the sucrose response thresholds of two different task groups, foragers (pollen and non-pollen) and non-foraging bees, in response to honey bee brood pheromone. Sucrose response thresholds were not significantly different between brood pheromone treatment and controls among both non-pollen and pollen foragers. However, the sucrose response threshold of non-foraging bees was significantly higher in the brood pheromone treatment group than in the control group. The switch to foraging task is considered a terminal one, with honey bee lifespan being determined at least partially by risks and stress accompanying foraging. Our results indicate that foragers are physiologically resistant to brood pheromone priming of sucrose response thresholds.  相似文献   

2.
Foraging for pollen is an important behavior of the honey bee because pollen is their sole source of protein. Through nurse bees, larvae are the principal consumers of pollen. Fatty acid esters extractable from the surface of larvae, called brood pheromone, release multiple colony-level and individual foraging behaviors increasing pollen intake. In this study pollen forager turnaround time was measured in observation hives supplemented with brood pheromone versus a blank control treatment. Treatment with brood pheromone significantly decreased pollen forager turnaround time in the hive between foraging bouts by approximately 72%. Concurrently, brood pheromone increased the ratio of pollen to non-pollen foragers entering colonies. Brood pheromone has been shown to release most of the mechanisms known to increase pollen intake by colonies acting as an important regulator of colony foraging decisions and growth.  相似文献   

3.
Honey bee, Apis mellifera L. (Hymenoptera: Apidae), nutrition is vital for colony growth and maintenance of a robust immune system. Brood rearing in honey bee colonies is highly dependent on protein availability. Beekeepers in general provide protein supplement to colonies during periods of pollen dearth. Honey bee brood pheromone is a blend of methyl and ethyl fatty acid esters extractable from cuticle of honey bee larvae that communicates the presence of larvae in a colony. Honey bee brood pheromone has been shown to increase protein supplement consumption and growth of honey bee colonies in a subtropical winter climate. Here, we tested the hypothesis that synthetic brood pheromone (SuperBoost) has the potential to increase protein supplement consumption during fall in a temperate climate and thus increase colony growth. The experiments were conducted in two locations in Oregon during September and October 2009. In both the experiments, colonies receiving brood pheromone treatment consumed significantly higher protein supplement and had greater brood area and adult bees than controls. Results from this study suggest that synthetic brood pheromone may be used to stimulate honey bee colony growth by stimulating protein supplement consumption during fall in a northern temperate climate, when majority of the beekeepers feed protein supplement to their colonies.  相似文献   

4.
Sagili RR  Pankiw T  Metz BN 《PloS one》2011,6(2):e16785
Division of labor is a striking feature observed in honey bees and many other social insects. Division of labor has been claimed to benefit fitness. In honey bees, the adult work force may be viewed as divided between non-foraging hive bees that rear brood and maintain the nest, and foragers that collect food outside the nest. Honey bee brood pheromone is a larval pheromone that serves as an excellent empirical tool to manipulate foraging behaviors and thus division of labor in the honey bee. Here we use two different doses of brood pheromone to alter the foraging stimulus environment, thus changing demographics of colony division of labor, to demonstrate how division of labor associated with brood rearing affects colony growth rate. We examine the effects of these different doses of brood pheromone on individual foraging ontogeny and specialization, colony level foraging behavior, and individual glandular protein synthesis. Low brood pheromone treatment colonies exhibited significantly higher foraging population, decreased age of first foraging and greater foraging effort, resulting in greater colony growth compared to other treatments. This study demonstrates how division of labor associated with brood rearing affects honey bee colony growth rate, a token of fitness.  相似文献   

5.
The increasing demand for insect pollinated crops and high recent losses of honey bee colonies raise concerns about food security. Systemic insecticides are recognized as one of the drivers of worldwide honey and wild bee declines. Particularly honey bees in agricultural environments are exposed to pesticides when they collect crop pollen and nectar. However, landscape scale studies which analyze pollen use and foraging distances of honey bees on mass-flowering crops like maize to evaluate potential exposure risks are currently lacking. In an experimental approach on a landscape scale we took advantage of intra-colonial dance communication to gather information about the location of utilized pollen resources. During maize flowering, four observation hives were placed in and rotated between 11 different landscapes which covered a gradient from low to high maize acreage. A higher frequency of dances for foraging locations on maize fields compared to other land use types shows that maize is an intensively used pollen resource for honey bee colonies. Mean foraging distances were significantly shorter for maize pollen than for other pollen origins. The percentage of maize pollen foragers did not increase with maize acreage in the landscape. The proportion of grassland area providing alternative pollen sources did not reduce the percentage of maize pollen foragers. Our findings allow estimating the distance-related exposure risk of honey bee colonies to pollen from surrounding maize fields treated with systemic insecticides. Similarly, the results can be used to estimate the exposure to transgenic maize pollen, which is relevant for honey production in European countries. Provision of alternative pollen resources within agri-environmental schemes could potentially reduce exposure risk to pesticide contaminated crop pollen.  相似文献   

6.
This study experimentally examines the relationship between colony state and the behaviour of individual pollen and nectar foragers in the honey bee, Apis mellifera L. In the first experiment we test the prediction that individual pollen foragers from colonies with higher brood quantities should exhibit a greater work effort for pollen resources than individual pollen foragers from colonies with low brood quantities. Eight colonies were assigned into two treatment groups; HIGH brood colonies were manipulated to contain 9600±480 cm2 brood area; LOW brood colonies were manipulated to contain 1600±80 cm2 brood area. We measured colony brood levels over the course of the experiment and collected individual pollen loads from returning pollen foragers. We found that, while colonies remained significantly different in brood levels, individual pollen foragers from HIGH brood colonies collected larger loads than individuals from LOW brood colonies. In the second experiment we investigated the influence of colony size on the behaviour of individual nectar foragers. We assigned eight colonies to two treatment groups; LARGE colonies were manipulated to contain 35000±1700 adult workers with 3500±175 cm2 brood area, and SMALL colonies were manipulated to contain 10000±500 adult workers with 1000±50 cm2 brood area. We observed foraging trips of individually marked workers and found that individuals from LARGE colonies made longer foraging trips than those from SMALL colonies (LARGE: 1666.7±126.4 seconds, SMALL: 1210.8±157.6 seconds), and collected larter nectar loads (LARGE: 19.2±1.0 l, SMALL: 14.6±0.8 l). These results indicate that individual nectar foragers from LARGE colonies tend to work harder than individuals from SMALL colonies. Both experiments indicate that the values of nectar and pollen resources to a colony change depend on colony state, and that individual foragers modify their behaviour accordingly.  相似文献   

7.
8.
Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.  相似文献   

9.
1. Genetic polymorphisms of flowering plants can influence pollinator foraging but it is not known whether heritable foraging polymorphisms of pollinators influence their pollination efficacies. Honey bees Apis mellifera L. visit cranberry flowers for nectar but rarely for pollen when alternative preferred flowers grow nearby. 2. Cranberry flowers visited once by pollen‐foraging honey bees received four‐fold more stigmatic pollen than flowers visited by mere nectar‐foragers (excluding nectar thieves). Manual greenhouse pollinations with fixed numbers of pollen tetrads (0, 2, 4, 8, 16, 32) achieved maximal fruit set with just eight pollen tetrads. Pollen‐foraging honey bees yielded a calculated 63% more berries than equal numbers of non‐thieving nectar‐foragers, even though both classes of forager made stigmatic contact. 3. Colonies headed by queens of a pollen‐hoarding genotype fielded significantly more pollen‐foraging trips than standard commercial genotypes, as did hives fitted with permanently engaged pollen traps or colonies containing more larvae. Pollen‐hoarding colonies together brought back twice as many cranberry pollen loads as control colonies, which was marginally significant despite marked daily variation in the proportion of collected pollen that was cranberry. 4. Caloric supplementation of matched, paired colonies failed to enhance pollen foraging despite the meagre nectar yields of individual cranberry flowers. 5. Heritable behavioural polymorphisms of the honey bee, such as pollen‐hoarding, can enhance fruit and seed set by a floral host (e.g. cranberry), but only if more preferred pollen hosts are absent or rare. Otherwise, honey bees' broad polylecty, flight range, and daily idiosyncrasies in floral fidelity will obscure specific pollen‐foraging differences at a given floral host, even among paired colonies in a seemingly uniform agricultural setting.  相似文献   

10.
The effects of changes in spring pollen diet on the development of honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies were examined in a 3-yr study (2002-2004). Pollen-supplemented and pollen-limited conditions were created in colonies every spring, and brood rearing and honey yields were subsequently monitored throughout the summer. In all 3 yr, colonies that were supplemented with pollen or a pollen substitute in the spring started rearing brood earlier than colonies in other treatment groups and produced the most workers by late April or early May. In 2002, these initial differences were reflected by a two-fold increase in annual honey yields by September for colonies that were pollen-supplemented during the spring compared with pollen-limited colonies. In 2003 and 2004, differences between treatment groups in the cumulative number of workers produced by colonies disappeared by midsummer, and all colonies had similar annual honey yields (exception: in one year, productivity was low for colonies supplemented with pollen before wintering). Discrepancies between years coincided with differences in spring weather conditions. Colonies supplemented with pollen or a substitute during the spring performed similarly in all respects. These results indicate that an investment in supplementing the pollen diet of colonies would be returned for situations in which large spring populations are important, but long-term improvement in honey yields may only result when spring foraging is severely reduced by inclement weather. Beekeepers should weigh this information against the nutritional deficiencies that are frequently generated in colonies by the stresses of commercial management.  相似文献   

11.
12.
A study on the relationship between the age of comb and the activity of the hybrid Carniolan honey bee colonies in collecting pollen activity, worker brood production, colony strength, and honey yield was conducted. In comparison to colonies with combs aged 4-years, colonies with combs aged 1, 2 and 3-years significantly exceeded in the number returning workers, number returning workers with pollen loads, rate of storing pollen, rate of worker brood production, and size of colony population. Colonies with combs aged 1, 2 and 3-years produced significantly more honey than colonies with combs aged 4-years (5.25, 4.90 and 4.65 kg/colony vs. 4.45 kg/colony, respectively). It can be concluded that the foraging rate, gathering and storing pollen, brood production, colony population size, and honey yield significantly depended on the age of combs. Beekeepers can replace old combs with new ones to increase brood and honey production.  相似文献   

13.
Neonicotinoid residues in nectar and pollen from crop plants have been implicated as one of the potential factors causing the declines of honey bee populations. Median residues of thiamethoxam in pollen collected from honey bees after foraging on flowering seed treated maize were found to be between 1 and 7 µg/kg, median residues of the metabolite CGA322704 (clothianidin) in the pollen were between 1 and 4 µg/kg. In oilseed rape, median residues of thiamethoxam found in pollen collected from bees were between <1 and 3.5 µg/kg and in nectar from foraging bees were between 0.65 and 2.4 µg/kg. Median residues of CGA322704 in pollen and nectar in the oilseed rape trials were all below the limit of quantification (1 µg/kg). Residues in the hive were even lower in both the maize and oilseed rape trials, being at or below the level of detection of 1 µg/kg for bee bread in the hive and at or below the level of detection of 0.5 µg/kg for hive nectar, honey and royal jelly samples. The long-term risk to honey bee colonies in the field was also investigated, including the sensitive overwintering stage, from four years consecutive single treatment crop exposures to flowering maize and oilseed rape grown from thiamethoxam treated seeds at rates recommended for insect control. Throughout the study, mortality, foraging behavior, colony strength, colony weight, brood development and food storage levels were similar between treatment and control colonies. Detailed examination of brood development throughout the year demonstrated that colonies exposed to the treated crop were able to successfully overwinter and had a similar health status to the control colonies in the following spring. We conclude that these data demonstrate there is a low risk to honey bees from systemic residues in nectar and pollen following the use of thiamethoxam as a seed treatment on oilseed rape and maize.  相似文献   

14.
Differences in flight activity and in the percentages of pollen foragers between commercially managed honey bees, Apis mellifera L. (Hymenoptera: Apidae), of two stocks (USDA-ARS Russian, n = 41 colonies; and Italian, n = 43 colonies) were evaluated in an almond, Prunus dulcis (Miller) D. A. Webb, orchard in Kern Co., CA, during February and March 2002. Flight activity was measured by taking 1-min counts of bees exiting colonies on each of 9 d. Flight activity was best predicted with a model containing the effects of colony size (populations of adult bees and sealed brood), temperature, time of day, the interaction of adult bee population with temperature, and the interaction of adult bee population with time of day. Flight increased linearly with adult bee and brood population, had a quadratic relationship with temperature (increasing, but less so at higher temperatures), and had a quadratic relationship with time of day (decreasing, but less so at later times). Larger colonies had more response to changing temperatures and less response to different times of day than small colonies. Bee type had no direct influence on flight activity at any given colony size, temperature, or time of observation or when evaluated using a reduced data set retaining 34 Italian colonies and 32 Russian colonies whose mean sizes were equal. Overall, however, Russian colonies were less populous by about one-fourth and so fielded on average 71% of the foragers that Italian colonies did. Pollen collection was measured by capturing returning foragers on 4 d. The percentages of foragers with pollen were not different for the bee types.  相似文献   

15.
Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.  相似文献   

16.
A hallmark of eusociality is cooperative brood care. In most social insect systems brood rearing labor is divided between individuals working in the nest tending the queen and larvae, and foragers collecting food outside the nest. To place brood rearing division of labor within an evolutionary context, it is necessary to understand relationships between individuals in the nest engaged in brood care and colony growth in the honey bee. Here we examined responses of the queen, queen-worker interactions, and nursing behaviors to an increase in the brood rearing stimulus environment using brood pheromone. Colony pairs were derived from a single source and were headed by open-mated sister queens, for a total of four colony pairs. One colony of a pair was treated with 336 μg of brood pheromone, and the other a blank control. Queens in the brood pheromone treated colonies laid significantly more eggs, were fed longer, and were less idle compared to controls. Workers spent significantly more time cleaning cells in pheromone treatments. Increasing the brood rearing stimulus environment with the addition of brood pheromone significantly increased the tempo of brood rearing behaviors by bees working in the nest resulting in a significantly greater amount of brood reared.  相似文献   

17.
Major Quantitative Trait Loci Affecting Honey Bee Foraging Behavior   总被引:12,自引:0,他引:12       下载免费PDF全文
We identified two genomic regions that affect the amount of pollen stored in honey bee colonies and influence whether foragers will collect pollen or nectar. We selected for the amount of pollen stored in combs of honey bee colonies, a colony-level trait, and then used random amplified polymorphic DNA (RAPD) markers and interval mapping procedures with data from backcross colonies to identify two quantitative trait loci (pln1 and pln2, LOD 3.1 and 2.3, respectively). Quantitative trait loci effects were confirmed in a separate cross by demonstrating the cosegregation of marker alleles with the foraging behavior of individual workers. Both pln1 and pln2 had an effect on the amount of pollen carried by foragers returning to the colony, as inferred by the association between linked RAPD marker alleles, D8-.3f and 301-.55, and the individual pollen load weights of returning foragers. The alleles of the two marker loci were nonrandomly distributed with respect to foraging task. The two loci appeared to have different effects on foraging behavior. Individuals with alternative alleles for the marker linked to pln2 (but not pln1) differed with respect to the nectar sugar concentration of their nectar loads.  相似文献   

18.
Octopamine treatment has previously been shown to increase honey bee foraging behaviour. We determined the effects of octopamine on other tasks to learn how octopamine affects division of labour in honey bee colonies. Octopamine treatment did not increase the rate of corpse removal from the hive, suggesting that elevated brain levels of octopamine do not act to increase the performance of all flight-related tasks. Octopamine treatment also did not increase attendance in the queen's retinue, suggesting that elevated brain levels of octopamine do not act to increase responsiveness to all olfactory stimuli. Consistent with these findings, octopamine treatment enhanced the foraging response to brood pheromone but not the cell capping response, a component of brood care. These results demonstrate a relatively specific form of neuromodulation by octopamine in the regulation of division of labour in honey bee colonies.  相似文献   

19.
Summary Seasonal foraging patterns were investigated using six observation colonies maintained in the Okavango Delta, Botswana. Pollen collection, flight from the hive, and recruitment for pollen and nectar sources occurred throughout the 11 months of the study. However, the distribution of foraging activity throughout the day changed seasonally. Colonies emphasized recruitment for pollen sites throughout most of the year. Brood production occurred in all months except May, and there was a significant, positive correlation between the proportion of recruitment activity devoted to pollen sources and the amount of brood comb in the colonies. The seasonal foraging patterns ofscutellata in the Okavango were similar to those of Africanized honey bees in the neotropics. The extended foraging season and emphasis on pollen collection may be associated with the high swarming rates and migrational movements of tropical honey bees.  相似文献   

20.
The benefits of honey bee dance communication for colony performance in different resource environments are still not well understood. Here, we test the hypothesis that directional dance communication enables honey bee colonies to maintain a diverse pollen diet, especially in landscapes with low resource diversity. To test this hypothesis, we placed 24 Apis mellifera L. colonies with either intact or experimentally disrupted dance communication in eight agricultural landscapes that differed in the diversity of flowering plants and in the dominance of mass‐flowering crops. Pollen from incoming foragers was collected and identified via DNA metabarcoding. Disrupting dance communication affected the way the diversity of honey bee pollen diets was impacted by the dominance of mass‐flowering crops in available flower resources (p = .04). With increasing dominance of mass‐flowering crops in resource environments, foragers of colonies with intact communication foraged on an increasing proportion of available plant genera (p = .01). This was not the case for colonies with disrupted dance communication (p = .5). We conclude that the honey bee dance communication benefits pollen foraging on diverse plant resources and thereby contributes to high quality nutrition in environments with low‐resource diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号