共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
I. Kaloshian M. G. Kinsey D. E. Ullman V. M. Williamson 《Entomologia Experimentalis et Applicata》1997,83(2):181-187
The effect of the tomato resistance gene, Meu1, on feeding, longevity, fecundity and developmental rate of the pink biotype of the potato aphid, Macrosiphum euphorbiae (Thomas) (Hemiptera, Aphididae), was determined using nearly isogenic tomato (Lycopersicon esculentum Mill, Solanaceae) lines. Aphid mortality was significantly higher on resistant plants, with 60% of the aphids dying by the 4th day of exposure. By the 10th day, all the aphids on the resistant plants were dead whereas 100% of the aphids on susceptible plants were alive. Meu1-mediated resistance resulted in significantly decreased fecundity with a ten-fold decrease in the net fertility rate (4.5 and 45.7 progeny per aphid on resistant and susceptible tomato, respectively). A qualitative analysis showed that honeydew was produced by aphids on resistant and susceptible plants, suggesting that aphids initiate feeding on both plant types. However, significantly lower quantities of honeydew were present when aphids were caged on resistant plants. There were also significant differences in aphid location on resistant and susceptible leaves. Experiments evaluating behavior in less than 24 h showed that aphids left resistant leaves after relatively short exposure (3–6 h). Aphids transferred from resistant to susceptible tomato at intervals between 3 h and 24 h resumed feeding as evidenced by presence of honeydew. Although the mechanism by which Meu1-mediated resistance operates is not yet known, our data suggest that resistance factors act rapidly after initiation of feeding and that lower fecundity and longevity are related to reduction in aphid feeding. 相似文献
3.
4.
Martinez de Ilarduya O Nombela G Hwang CF Williamson VM Muñiz M Kaloshian I 《Molecular plant-microbe interactions : MPMI》2004,17(1):55-61
The tomato gene Mi-1 confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphid, and whitefly. Using genetic screens, we have isolated a mutant, rme1 (resistance to Meloidogyne spp.), compromised in resistance to M. javanica and potato aphid. Here, we show that the rme1 mutant is also compromised in resistance to M. incognita, M. arenaria, and whitefly. In addition, using an Agrobacterium-mediated transient assay in leaves to express constitutive gain-of-function mutant Pto(L205D), we demonstrated that the rme1 mutation is not compromised in Pto-mediated hypersensitive response. Moreover, the mutation in rme1 does not result in increased virulence of pathogenic Pseudomonas syringae or Mi-1-virulent M. incognita. Using a chimeric Mi-1 construct, Mi-DS4, which confers constitutive cell death phenotype and A. rhizogenes root transformation, we showed that the Mi-1-mediated cell death pathway is intact in this mutant. Our results indicate that Rme1 is required for Mi-1-mediated resistance and acts either at the same step in the signal transduction pathway as Mi-1 or upstream of Mi-1. 相似文献
5.
6.
Meloidogyne enterolobii is widely considered to be an aggressive root-knot nematode species that is able to reproduce on root-knot nematode-resistant tomato and pepper cultivars. In greenhouse experiments, M. enterolobii isolates 1 and 2 from Switzerland were able to reproduce on tomato cultivars carrying the Mi-1 resistance gene as well as an N-carrying pepper cultivar. Reproduction factors (Rf) ranged between 12 and 109 depending on the plant cultivar, with M. enterolobii isolate 2 being more virulent when compared to isolate 1. In contrast, M. arenaria completely failed to reproduce on these resistant tomato and pepper cultivars. Although some variability in virulence and effectiveness of root-knot nematode-resistance genes was detected, none of the plant cultivars showed Rf values less than 1 or less than 10% of the reproduction observed on the susceptible cv. 'Moneymaker' (Rf = 23-44) used to characterize resistance. The ability of M. enterolobii to overcome the resistance of tomato and pepper carrying the Mi-1 and the N gene makes it difficult to manage this root-knot nematode species, particularly in organic farming systems where chemical control is not an option. 相似文献
7.
Ayodele Adesina Adegbite 《Archives Of Phytopathology And Plant Protection》2017,50(7-8):330-340
Twenty cassava cultivars were screened in micro-plot experiments in the green house of Institute of Agricultural Research and Training, Obafemi Awolowo University, Moor Plantation, Ibadan for root-knot nematode resistance. Four weeks after planting, each plant was inoculated with 5000 eggs of Meloidogyne incognita. There were three replications per cultivar. The plants were uprooted and assessed for resistance after 60 days of inoculation. Assessment of plant damaged was determined by gall index and reproductive factor. Based on host status rating, 3 cultivars were found to be resistant, 4 cultivars were tolerant, 10 cultivars ere susceptible while .3 cultivars were hypersusceptible. All the screened cultivars are resistant to cassava mosaic disease and other major pests of cassava like bacterial disease, anthracnose disease, cassava green mite and cassava mealy bug. They are all high yielding, suitable for food, industry and livestock feed. 相似文献
8.
Salicylic acid is part of the Mi-1-mediated defense response to root-knot nematode in tomato 总被引:2,自引:0,他引:2
Branch C Hwang CF Navarre DA Williamson VM 《Molecular plant-microbe interactions : MPMI》2004,17(4):351-356
The Mi-1 gene of tomato confers resistance against three species of root-knot nematode in tomato (Lycopersicon esculentum). Transformation of tomato carrying Mi-1 with a construct expressing NahG, which encodes salicylate hydroxylase, a bacterial enzyme that degrades salicylic acid (SA) to catechol, results in partial loss of resistance to root-knot nematodes. Exogenous SA was toxic to roots expressing NahG but not to control roots. This toxicity is most likely due to the production of catechol from SA, and we report here that 100 microM catechol is toxic to tomato roots. Benzothiadiazole, a SA analog, completely restores nematode resistance in Mi-1 roots transformed with NahG but does not confer resistance to susceptible tomato roots. The localized cell death produced by transient expression in Nicotiana benthamiana of Mi-DS4, a constitutively lethal chimera of Mi-1 with one of its homologs, was prevented by coexpression of NahG. These results indicate that SA is an important component of the signaling that leads to nematode resistance and the associated hypersensitive response. 相似文献
9.
10.
Seifi A Kaloshian I Vossen J Che D Bhattarai KK Fan J Naher Z Goverse A Tjallingii WF Lindhout P Visser RG Bai Y 《Molecular plant-microbe interactions : MPMI》2011,24(4):441-450
On the short arm of tomato chromosome 6, a cluster of disease resistance (R) genes have evolved harboring the Mi-1 and Cf genes. The Mi-1 gene confers resistance to root-knot nematodes, aphids, and whiteflies. Previously, we mapped two genes, Ol-4 and Ol-6, for resistance to tomato powdery mildew in this cluster. The aim of this study was to investigate whether Ol-4 and Ol-6 are homologues of the R genes located in this cluster. We show that near-isogenic lines (NIL) harboring Ol-4 (NIL-Ol-4) and Ol-6 (NIL-Ol-6) are also resistant to nematodes and aphids. Genetically, the resistance to nematodes cosegregates with Ol-4 and Ol-6, which are further fine-mapped to the Mi-1 cluster. We provide evidence that the composition of Mi-1 homologues in NIL-Ol-4 and NIL-Ol-6 is different from other nematode-resistant tomato lines, Motelle and VFNT, harboring the Mi-1 gene. Furthermore, we demonstrate that the resistance to both nematodes and tomato powdery mildew in these two NIL is governed by linked (if not the same) Mi-1 homologues in the Mi-1 gene cluster. Finally, we discuss how Solanum crops exploit Mi-1 homologues to defend themselves against distinct pathogens. 相似文献
11.
Reproduction of artificially selected near isogenic Meloidogyne incognita lineages virulent and avirulent against the Mi resistance gene of tomato was assessed on host and resistant lines and cultivars of pepper. Egg mass production following inoculation of individual potted seedlings with second-stage juveniles was studied in experiments conducted in controlled environment. Artificially selected Mi-virulent nematode populations were unable to develop on resistant pepper lines PM 217 and PM 687. This suggests that the genetic systems governing resistance to root-knot nematodes are differently expressed in tomato and pepper, in spite of the very close phylogenetic relationships and structural genomic homologies occurring between these two vegetable crops. Moreover, these artificially selected nematode populations were also found unable to develop on the susceptible pepper cultivars California Wonder and Doux Long des Landes, while their pathogenicity was not significantly affected on susceptible tomatoes. Due to the existence of naturally virulent Meloidogyne populations, these results enhance the need for a better understanding of the mechanisms involved, in order to develop new forms of management of plant resistance to root-knot nematodes. 相似文献
12.
James Anstead Preethi Samuel Ning Song Chengjun Wu Gary A. Thompson Fiona Goggin 《Entomologia Experimentalis et Applicata》2010,134(2):170-181
The simple gaseous compound ethylene (ET) has long been recognized as a common component of plant responses to insect feeding and pathogen attack. However, it is presently uncertain whether it plays a role in host–plant resistance to piercing–sucking insects such as aphids. In these experiments, we investigated the expression of key ET‐associated genes in resistant and susceptible interactions in two model systems: the tomato‐Mi‐Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae: Macrosiphini) system and the melon‐virus aphid transmission gene (Vat)‐Aphis gossypii Glover (Hemiptera: Aphididiae: Aphidini) system. We examined expression patterns of genes associated with ET synthesis, perception, signal transduction, and downstream response. When compared with control plants, plants infested with aphids showed marked differences in gene expression. In particular, ET signaling pathway genes and downstream response genes were highly upregulated in the resistant interaction between A. gossypii and Vat+, indicating ET may play a role in Vat‐mediated host–plant resistance. A key integrator between the ET and jasmonic acid pathways (Cm‐ERF1) showed the strongest response. 相似文献
13.
The tomato gene Mi-1.2 confers resistance against root-knot nematodes and some isolates of potato aphid. Resistance to the whitefly Bemisia tabaci previously has been observed in Mi-bearing commercial tomato cultivars, suggesting that Mi, or a closely linked gene, is responsible for the resistance. The response of two biotypes of B. tabaci to tomato carrying the cloned Mi was compared with that of the isogenic untransformed tomato line Moneymaker. Our results indicate that Mi-1.2 is responsible for the resistance in tomato plants to both B- and Q- biotypes. Mi-1.2 is unique among characterized resistance genes in its activity against three very different organisms (root-knot nematodes, aphids, and whiteflies). These pests are among the most important on tomato crops worldwide, making Mi a valuable resource in integrated pest management programs. 相似文献
14.
Joseph C. Goffreda Martha A. Mutschler Ward M. Tingey 《Entomologia Experimentalis et Applicata》1988,48(2):101-107
Mortality of the potato aphid, Macrosiphum euphorbiae (Thomas), on Lycopersicon pennellii (Corr.) D'Arcy and its F1 hybrid with Lycopersicon esculentum Mill. was significantly greater than that on L. esculentum. Physical entrapment was not the sole mechanism of resistance in L. pennellii since few late instar aphids were found trapped in the sticky glandular exudate of the type IV trichomes; entrapment could, however, affect survival of early instars. Aphid settling on L. pennellii was dramatically less than that on L. esculentum, suggesting that starvation may have contributed to high mortality. Compared to L. esculentum, aphid feeding behavior on L. pennellii and the F1 was characterized by a delay in the time to first probe, a reduction in the number of probes, and a decrease in the total proportion of time spent feeding. Removal of the glandular exudate of the type IV trichomes from L. pennellii resulted in a decrease in preprobe time and an increase in both the number of probes and the percent of time spent probing. Transfer of glandular trichome exudate of L. pennellii to leaflets of L. esculentum resulted in an increase in resistance as measured by these three parameters.
Zusammenfassung Die Absterberate der Kartoffellaus, Macrosiphum euphorbiae Thomas, auf Lycopersicon pennellii (Corr.) D'Arcy, sowie auf der Kreuzung L. esculentum Mill. und L. pennellii, war deutlich grösser als auf L. esculentum. Das mechanische Verfangen der Läuse war nicht der Hauptgrund der Resistenz von L. pennellii. Wenige tote Läuse wurden in dem klebrigen Sekret der Typus IV Trichome gefunden. Auf L. pennellii siedelten sich die Läuse in viel geringerer Zahl an als auf L. esculentum. Dies führte zum Schluss, dass Verhungern eine der Ursachen der hohen Mortalität der Läuse war. Im Vergleich zum Saugverhalten auf L. esculentum war das Saugverhalten auf L. pennellii, wie auch auf F1, durch Folgendes gekennzeichnet 1) Verspätung des ersten Stichversuchs, 2) Verminderung der Stichversuche pro Zeiteinheit und 3) Verminderung des Zeitanteils, der zum Saugen verwendet wurde. Die Entfernung des Sekrets der Typus IV Trichomen auf L. pennellii verursachte 1) eine kürzere Zeitspanne vor dem ersten Stichversuch, 2) eine Vergrösserung der Anzahl Stichversuche pro Zeiteinheit, 3) eine Verlängerung der Saugzeit. Die Uebertragung des Sekretes von L. pennellii auf Blätter von L. esculentum verbesserte deren Resistenz gegen Blattläuse gemessen mit den genannten drei Kriterien.相似文献
15.
The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato 总被引:7,自引:0,他引:7
van der Vossen EA Gros J Sikkema A Muskens M Wouters D Wolters P Pereira A Allefs S 《The Plant journal : for cell and molecular biology》2005,44(2):208-222
The necessity to develop potato and tomato crops that possess durable resistance against the oomycete pathogen Phytophthora infestans is increasing as more virulent, crop-specialized and pesticide resistant strains of the pathogen are rapidly emerging. Here, we describe the positional cloning of the Solanum bulbocastanum-derived Rpi-blb2 gene, which even when present in a potato background confers broad-spectrum late blight resistance. The Rpi-blb2 locus was initially mapped in several tetraploid backcross populations, derived from highly resistant complex interspecific hybrids designated ABPT (an acronym of the four Solanum species involved:S. acaule, S. bulbocastanum, S. phureja and S. tuberosum), to the same region on chromosome 6 as the Mi-1 gene from tomato, which confers resistance to nematodes, aphids and white flies. Due to suppression of recombination in the tetraploid material, fine mapping was carried out in a diploid intraspecific S. bulbocastanum F1 population. Bacterial artificial chromosome (BAC) libraries, generated from a diploid ABPT-derived clone and from the resistant S. bulbocastanum parent clone, were screened with markers linked to resistance in order to generate a physical map of the Rpi-blb2 locus. Molecular analyses of both ABPT- and S. bulbocastanum-derived BAC clones spanning the Rpi-blb2 locus showed it to harbor at least 15 Mi-1 gene homologs (MiGHs). Of these, five were genetically determined to be candidates for Rpi-blb2. Complementation analyses showed that one ABPT- and one S. bulbocastanum-derived MiGH were able to complement the susceptible phenotype in both S. tuberosum and tomato. Sequence analyses of both genes showed them to be identical. The Rpi-blb2 protein shares 82% sequence identity to the Mi-1 protein. Significant expansion of the Rpi-blb2 locus compared to the Mi-1 locus indicates that intrachromosomal recombination or unequal crossing over has played an important role in the evolution of the Rpi-blb2 locus. The contrasting evolutionary dynamics of the Rpi-blb2/Mi-1 loci in the two related genomes may reflect the opposite evolutionary potentials of the interacting pathogens. 相似文献
16.
van der Vossen E Sikkema A Hekkert Bt Gros J Stevens P Muskens M Wouters D Pereira A Stiekema W Allefs S 《The Plant journal : for cell and molecular biology》2003,36(6):867-882
Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating disease for potato cultivation. Here, we describe the positional cloning of the Rpi-blb1 gene from the wild potato species Solanum bulbocastanum known for its high levels of resistance to late blight. The Rpi-blb1 locus, which confers full resistance to complex isolates of P. infestans and for which race specificity has not yet been demonstrated, was mapped in an intraspecific S. bulbocastanum population on chromosome 8, 0.3 cM from marker CT88. Molecular analysis of a bacterial artificial chromosome (BAC) clone spanning the Rpi-blb1 locus identified a cluster of four candidate resistance gene analogues of the coiled coil, nucleotide-binding site, leucine-rich repeat (CC-NBS-LRR) class of plant resistance (R) genes. One of these candidate genes, designated the Rpi-blb1 gene, was able to complement the susceptible phenotype in a S. tuberosum and tomato background, demonstrating the potential of interspecific transfer of broad-spectrum late blight resistance to cultivated Solanaceae from sexually incompatible host species. Paired comparisons of synonymous and non-synonymous nucleotide substitutions between different regions of Rpi-blb1 paralogues revealed high levels of synonymous divergence, also in the LRR region. Although amino acid diversity between Rpi-blb1 homologues is centred on the putative solvent exposed residues of the LRRs, the majority of nucleotide differences in this region have not resulted in an amino acid change, suggesting conservation of function. These data suggest that Rpi-blb1 is relatively old and may be subject to balancing selection. 相似文献
17.
Godshen R. Pallipparambil John C. Reese Carlos A. Avila Joe M. Louis Fiona L. Goggin 《Entomologia Experimentalis et Applicata》2010,135(3):295-307
The Mi‐1.2 gene in tomato, Solanum lycopersicum L. (Solanaceae), confers resistance against several herbivores, including the potato aphid, Macrosiphum euphorbiae (Thomas) (Hemiptera: Sternorrhyncha: Aphididae) and the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae). Previous studies on the tissue localization of resistance have given varying results; whitefly resistance was attributed to factors localized in the mesophyll or epidermis, whereas aphid resistance was attributed to factors localized in the phloem. Our study utilizes the direct current electrical penetration graph (DC‐EPG) technique to compare aphid feeding behavior on resistant (Mi‐1.2+) and susceptible (Mi‐1.2?) tomato plants. This study also compares the impact of resistance on the feeding behavior of two aphid clones that vary in their virulence, or their ability to survive and reproduce on resistant plants. Previous work had shown that the avirulent WU11 clone is almost completely inhibited by resistance, whereas the semi‐virulent WU12 clone can colonize resistant hosts. Here, DC‐EPG analysis shows that both aphid clones take longer to initiate cell sampling and to establish a confirmed sieve element phase on resistant plants than on susceptible hosts, and have shorter ingestion periods on resistant plants. However, the magnitude of these deterrent effects is far less for the semi‐virulent clone than for the avirulent aphids. In particular, the WU12 clone is less sensitive to factors that limit sieve element ingestion, showing shorter non‐probe duration and rapidly establishing sustained phloem ingestion on resistant plants when compared to the WU11 clone. We conclude that, in addition to previously described factors in the phloem that inhibit ingestion, Mi‐mediated aphid resistance also involves factors (possibly in the mesophyll and/or epidermis) that delay initiation of phloem salivation, and that act in the intercellular spaces to deter the first cell sampling. Furthermore, the relative effectiveness of these components of resistance differs among insect populations. 相似文献
18.
Insecticide-resistant Colorado potato beetles (CPB), Leptinotarsa decemlineata, from Long Island, New York and susceptible beetles from North Carolina were tested for response to 2-tridecanone and foliage of the CPB resistant wild tomato, Lycopersicon hirsutum f. glabratum C. H. Mull, PI 134417. Populations did not differ in their response to 2-tridecanone or PI 134417 foliage. Exposure of beetles to sublethal doses of 2-tridecanone did not increase tolerance of either population to subsequent exposures to 2-tridecanone. It was also found that the New York beetles suffered higher mortality than North Carolina beetles on CPB susceptible L. esculentum foliage and PI 134417 foliage from which the glandular trichomes, which contain 2-tridecanone, were removed. Survival of North Carolina beetles was lower on PI 134417 foliage without trichomes than on L. esculentum foliage.
Résumé La lutte contre Leptinotarsa decemlineata, sur la tomate et des autres récoltes, compte ordinairement sur les insecticides. Cette confiance a causé plusieurs populations de cette espèce à développer une résistance aux insecticides. Accession PI 134417 de la tomate sauvage, Lycopersicon hirsutum f. glabratum C. H. Mull, est résistant à L. decemlineata, en grande partie à cause de la presence de 2-tridécanone dans les éxtremités des poils glandulaires du feuillage. Notre étude entreprendait à rechercher la possibilité d'une résistance croisée aux insecticides et au 2-tridécanone.Les coléoptères de Long Island, New York, ceux qui sont résistants aux insecticides et ceux susceptibles de North Carolina, éprouvaient pour une réponse au 2-tridécanone et au feuillage résistant.Les deux populations de coléoptères ne diffèrent pas dans sa réponse au 2-tridécanone ou au feuillage résistant. Nous ne trouvons pas d'évidence d'une résistance croisée.Aussi, nous trouvons que les coléoptères de New York ne survivaient pas aussi bien que ceux de North Carolina au feuillage résistant sans les éxtremités des poils glandulaires et au feuillage susceptible. La survivance était plus basse sur le feuillage résistant sans les éxtremités des poils glandulaires que le feuillage susceptible seulement avec les coléoptères de North Carolina.相似文献
19.
X.-B. Zhong J. Bodeau P. F. Fransz V. M. Williamson A. van Kammen J. H. de Jong P. Zabel 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1999,98(3-4):365-370
The root-knot nematode resistance gene Mi-1 in tomato has long been thought to be located in the pericentromeric heterochromatin region of the long arm of chromosome
6 because of its very tight genetic linkage (approx. 1 cM) to the markers Aps-1 (Acid phosphatase 1) and yv (yellow virescent). Using Mi-BAC clones and an Aps-1 YAC clone in fluorescence in situ hybridisation (FISH) to pachytene
chromosomes we now provide direct physical evidence showing that Mi-1 is located at the border of the euchromatin and heterochromatin regions in the short arm (6S) and Aps-1 in the pericentromeric heterochromatin of the long arm (6L) close to the euchromatin. Taking into account both the estimated
DNA content of hetero- and euchromatin regions and the compactness of the tomato chromosomes at pachytene (2 Mb/μm), our data
suggest that Mi-1 and Aps-1 are at least 40 Mb apart, a base pair-to-centiMorgan relationship that is more than 50-fold higher than the average value
of 750 kb/cM of the tomato genome. An integrated cytogenetic-molecular map of chromosome 6 is presented that provides a framework
for physical mapping.
Received: 24 July 1998 / Accepted: 14 August 1998 相似文献
20.
Different forms of crop resistance developed against majorpotato pests such as the Colorado potato beetle (CPB), Leptinotarsadecemlineata, may be variously compatible with biological controlof secondary pests such as aphids. We compared the performance of theparasitoid Aphidius nigripes developing in the aphid hostMacrosiphum euphorbiae, on five potato lines, including atransgenic `Superior-BT' line expressing the CryIIIA toxin ofBacillus thuringiensis, which is specific to Coleoptera; andthe `NYL 235-4' line derived from Solanum berthaultii,characterized by relatively unspecific resistance to herbivores based onmoderately-high density of glandular trichomes. The other lines testedwere a `Kennebec-OCI' transgenic line expressing the protease inhibitorrice cystatin I (OCI), a potential resistance factor against coleopteranpests; and the commercial cultivars `Superior' and `Kennebec' used ascontrols. Parasitoid immature survival and adult size were reducedcompared to controls when the wasps developed on aphids fed the`Superior-BT' potato. In contrast, parasitoid size and fecundityincreased above control when the wasps developed on aphids fed the`Kennebec-OCI' potato. Parasitoids reached the adult stage faster andwere more fecund on `NYL 235-4' than control lines. The results indicatethat the different forms of potato resistance currently developed mainlyagainst the CPB had various unexpected effects on aphid parasitoidfitness. These effects on the parasitoid were complex but were generallyinterpretable in terms of host aphid quality variation among potatolines used as food by the aphids during parasitoiddevelopment. 相似文献