首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The availability of the three dimensional structure of mitochondrial enzyme, obtained by X-ray crystallography, allowed a significant progress in the understanding of the structure-function relation of the cytochrome bc1 complex. Most of the structural information obtained has been confirmed by molecular genetic studies of the bacterial complex. Despite its small size and simple subunit composition, high quality crystals of the bacterial complex have been difficult to obtain and so far, only low resolution structural data has been reported. The low quality crystal observed is likely associated in part with the low activity and stability of the purified complex. To mitigate this problem, we recently engineered a mutant [S287R(cytb)/V135S(ISP)] from Rhodobacter sphaeroides to produce a highly active and more stable cytochrome bc1 complex. The purified mutant complex shows a 40% increase in electron transfer activity as compared to that of the wild type enzyme. Differential scanning calorimetric study shows that the mutant is more stable than the wild type complex as indicated by a 4.3 °C increase in the thermo-denaturation temperature. Crystals formed from this mutant complex, in the presence of stigmatellin, diffract X-rays up to 2.9 Å resolution.  相似文献   

2.
The functional significance of ribosomal proteins is still relatively unclear. Here, we examined the role of small subunit protein S20 in translation using both in vivo and in vitro techniques. By means of lambda red recombineering, the rpsT gene, encoding S20, was removed from the chromosome of Salmonella enterica var. Typhimurium LT2 to produce a ΔS20 strain that grew markedly slower than the wild type while maintaining a wild-type rate of peptide elongation. Removal of S20 conferred a significant reduction in growth rate that was eliminated upon expression of the rpsT gene on a high-copy-number plasmid. The in vitro phenotype of mutant ribosomes was investigated using a translation system composed of highly active, purified components from Escherichia coli. Deletion of S20 conferred two types of initiation defects to the 30S subunit: (i) a significant reduction in the rate of mRNA binding and (ii) a drastic decrease in the yield of 70S complexes caused by an impairment in association with the 50S subunit. Both of these impairments were partially relieved by an extended incubation time with mRNA, fMet-tRNAfMet, and initiation factors, indicating that absence of S20 disturbs the structural integrity of 30S subunits. Considering the topographical location of S20 in complete 30S subunits, the molecular mechanism by which it affects mRNA binding and subunit docking is not entirely obvious. We speculate that its interaction with helix 44 of the 16S ribosomal RNA is crucial for optimal ribosome function.  相似文献   

3.
Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 Å resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the β subunit is essentially involved in substrate binding and that the α subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the β subunit in the hydrophobic groove have shown that βIle107 has a critical role in forming the hydrophobic groove.  相似文献   

4.

Background

Supplementation of broiler chicken diets with probiotics may improve carcass characteristics and meat quality. However, the underlying molecular mechanism remains unclear. In the present study, 2D-DIGE-based proteomics was employed to investigate the proteome changes associated with improved carcass traits and meat quality of Arbor Acres broilers (Gallus gallus) fed the probiotic Enterococcus faecium.

Results

The probiotic significantly increased meat colour, water holding capacity and pH of pectoral muscle but decreased abdominal fat content. These meat quality changes were related to the altered abundance of 22 proteins in the pectoral muscle following E. faecium feeding. Of these, 17 proteins have central roles in regulating meat quality due to their biological interaction network. Altered cytoskeletal and chaperon protein expression also contribute to improved water holding capacity and colour of meat, which suggests that upregulation of chaperon proteins maintains cell integrity and prevents moisture loss by enhancing folding and recovery of the membrane and cytoskeletal proteins. The down-regulation of β-enolase and pyruvate kinase muscle isozymes suggests roles in increasing the pH of meat by decreasing the production of lactic acid. The validity of the proteomics results was further confirmed by qPCR.

Conclusions

This study reveals that improved meat quality of broilers fed probiotics is triggered by proteome alterations (especially the glycolytic proteins), and provides a new insight into the mechanism by which probiotics improve poultry production.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1167) contains supplementary material, which is available to authorized users.  相似文献   

5.
This paper covers genetic and biochemical aspects of mitochondrial bioenergetics dysfunction in hereditary neurological disorders associated with complex I defects. Three types of hereditary complex I dysfunction are dealt with: (i) homozygous mutations in the nuclear genes NDUFS1 and NDUFS4 of complex I, associated with mitochondrial encephalopathy; (ii) a recessive hereditary epileptic neurological disorder associated with enhanced proteolytic degradation of complex I; (iii) homoplasmic mutations in the ND5 and ND6 mitochondrial genes of the complex, cohexistent with mutation in the nuclear PINK1 gene in familial Parkinsonism. The genetic and biochemical data examined highlight different mechanisms by which mitochondrial bioenergetics is altered in these hereditary defects of complex I. This knowledge, besides clarifying molecular aspects of the pathogenesis of hereditary diseases, can also provide hints for understanding the involvement of complex I in sporadic neurological disorders and aging, as well as for developing therapeutical strategies.  相似文献   

6.
The anthranilate phosphoribosyltransferase from Sulfolobus solfataricus (ssAnPRT) forms a homodimer with a hydrophobic subunit interface. To elucidate the role of oligomerisation for catalytic activity and thermal stability of the enzyme, we loosened the dimer by replacing two apolar interface residues with negatively charged residues (mutations I36E and M47D). The purified double mutant I36E+M47D formed a monomer with wild-type catalytic activity but reduced thermal stability. The single mutants I36E and M47D were present in a monomer-dimer equilibrium with dissociation constants of about 1 μM and 20 μM, respectively, which were calculated from the concentration-dependence of their heat inactivation kinetics. The monomeric form of M47D, which is populated at low subunit concentrations, was as thermolabile as monomeric I36E+M47D. Likewise, the dimeric form of I36E, which was populated at high subunit concentrations, was as thermostable as dimeric wild-type ssAnPRT. These findings show that the increased stability of wild-type ssAnPRT compared to the I36E+M47D double mutant is not caused by the amino acid exchanges per se but by the higher intrinsic stability of the dimer compared to the monomer. In accordance with the negligible effect of the mutations on catalytic activity and stability, the X-ray structure of M47D contains only minor local perturbations at the dimer interface. We conclude that the monomeric double mutant resembles the individual wild-type subunits, and that ssAnPRT is a dimer for stability but not for activity reasons.  相似文献   

7.
Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a “pearl-chain” of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O2 molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 Å cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter-FU interfaces, and the allosteric unit are still obscure, but this knowledge is crucial to understand assembly and allosterism of these proteins. Here we present the cryo-EM structure of Nautilus hemocyanin at 9.1 Å resolution (FSC1/2-bit criterion), and its molecular model obtained by rigid-body fitting of the individual FUs. In this model we identified the subunit dimer, the subunit pathway, and 15 types of inter-FU interface. Four interface types correspond to the association mode of the two protomers in the published Octopus FU-g crystal. Other interfaces explain previously described morphological structures such as the fenestrated wall (which shows D5 symmetry), the three horizontal wall tiers, the major and minor grooves, the anchor structure and the internal collar (which unexpectedly has C5 symmetry). Moreover, the potential calcium/magnesium and N-glycan binding sites have emerged. Many interfaces have amino acid constellations that might transfer allosteric interaction between FUs. From their topologies we propose that the prime allosteric unit is the oblique segment between major and minor groove, consisting of seven FUs from two different subunits. Thus, the 9 Å structure of Nautilus hemocyanin provides fundamentally new insight into the architecture and function of molluscan hemocyanins.  相似文献   

8.
In this study, we used native gradient-polyacrylamide gel electrophoresis and electroelution (NGGEE) to purify enzymatic proteins from Trichoderma koningii AS3.2774. With this method, we purified eight enzymatic proteins and classified them to the cellulase system by comparing secretions of T. koningii in inductive medium and in repressive medium. It resulted in 24-fold β-glucosidase (BG) purification with a recovery rate of 5.5%, and a specific activity of 994.6 IU mg− 1 protein. The final yield of BG reached 8 μg under purifying procedure of NGGEE. We also identified BG using the enzyme assay with thin-layer chromatography and MALDI-TOFMS. This BG had one subunit with a molecular mass of 69.1 kDa as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis. The hydrolytic activity of the BG had an optimal pH of 5.0, an optimal temperature of 50 °C, an isoelectric point of 5.68 and a Km for p-nitrophenyl-β-d-glucopyranoside of 2.67 mM. Taken together, we show that NGGEE is a reliable method through which μg grade of active proteins can be purified.  相似文献   

9.
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N′-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F1-Fo interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c.  相似文献   

10.
Functional studies of Streptococcus pneumoniae virulence factors are facilitated by the development of complementation/mutagenesis systems. These methods usually result in poor expression yields; therefore, biochemical and structural/functional characterizations are mostly performed with proteins expressed and purified from heterologous systems (e.g. Escherichia coli). However, heterologous expression does not guarantee correct protein structure and function. In this work, we developed a method to over-express and purify homologous proteins from S. pneumoniae. The system relies on the combined use of the shuttle plasmid pMU1328 and a natural constitutive pneumococcal promoter, P96. Efficient over-expression of secreted, membrane or surface anchored proteins, either wild type or mutant, was achieved. As proof of principle the S. pneumoniae pilus-1 backbone RrgB was successfully purified as a His-tag secreted protein (RrgB-His_SP) from pneumococcal culture supernatants. N-terminal sequencing and mass spectrometry analysis of RrgB-His_SP allowed the determination of the leader sequence cleavage site in pneumococcus, while proteolysis studies confirmed the stability of RrgB-His_SP to trypsin digestion. The data presented here support the use of this novel homologous expression method for all S. pneumoniae proteins for which extensive characterization studies are planned. Moreover, given the promiscuity of the pMU1328 replicon, this system could be used in diverse bacterial species.  相似文献   

11.
Recombinant mutant OmpF porins from Yersinia pseudotuberculosis outer membrane were obtained using site-directed mutagenesis. Here we used four OmpF mutants where single extracellular loops L1, L4, L6, and L8 were deleted one at a time. The proteins were expressed in Escherichia coli at levels comparable to full-sized recombinant OmpF porin and isolated from the inclusion bodies. Purified trimers of the mutant porins were obtained after dialysis and consequent ion-exchange chromatography. Changes in molecular and spatial structure of the mutants obtained were studied using SDS–PAGE and optical spectroscopy (circular dichroism and intrinsic protein fluorescence). Secondary and tertiary structure of the mutant proteins was found to have some features in comparison with that of the full-sized recombinant OmpF. As shown by bilayer lipid membrane technique, the pore-forming activity of purified mutant porins was identical to OmpF porin isolated from the bacterial outer membrane. Lacking of the external loops mentioned above influenced significantly upon the antigenic structure of the porin as demonstrated using ELISA.  相似文献   

12.
The NDUFS4 subunit of complex I of the mammalian respiratory chain has a fully conserved carboxy-terminus with a canonical RVSTK phosphorylation site. Immunochemical analysis with specific antibodies shows that the serine in this site of the protein is natively present in complex I in both the phosphorylated and non-phosphorylated state. Two-dimensional IEF/SDS–PAGE electrophoresis, 32P labelling and immunodetection show that “in vitro” PKA phosphorylates the serine in the C-terminus of the NDUFS4 subunit in isolated bovine complex I. 32P labelling and TLC phosphoaminoacid mapping show that PKA phosphorylates serine and threonine residues in the purified heterologous human NDUFS4 protein.  相似文献   

13.
The medaka fish α-amylase was expressed and purified. The expression systems were constructed using methylotrophic yeast Pichia pastoris, and the recombinant proteins were secreted into the culture medium. Purified recombinant α-amylase exhibited starch hydrolysis activity. The optimal pH, denaturation temperature, and KM and Vmax values were determined; chloride ions were essential for enzyme activity. The purified protein was also crystallized and examined by X-ray crystallography. The structure has the (α/β)8 barrel fold, as do other known α-amylases, and the overall structure is very similar to the structure of vertebrate (human and pig) α-amylases. A novel expression plasmid was developed. Using this plasmid, high-throughput construction of an expression system by homologous recombination in P. pastoris cells, previously reported for membrane proteins, was successfully applied to the secretory protein.  相似文献   

14.
The ribosomal proteins L4 and L22 form part of the peptide exit tunnel in the large ribosomal subunit. In Escherichia coli, alterations in either of these proteins can confer resistance to the macrolide antibiotic, erythromycin. The structures of the 30S as well as the 50S subunits from each antibiotic resistant mutant differ from wild type in distinct ways and L4 mutant ribosomes have decreased peptide bond-forming activity. Our analyses of the decoding properties of both mutants show that ribosomes carrying the altered L4 protein support increased levels of frameshifting, missense decoding and readthrough of stop codons during the elongation phase of protein synthesis and stimulate utilization of non-AUG codons and mutant initiator tRNAs at initiation. L4 mutant ribosomes are also altered in their interactions with a range of 30S-targeted antibiotics. In contrast, the L22 mutant is relatively unaffected in both decoding activities and antibiotic interactions. These results suggest that mutations in the large subunit protein L4 not only alter the structure of the 50S subunit, but upon subunit association, also affect the structure and function of the 30S subunit.  相似文献   

15.
Present study describes the improvement of alkaline ??-keratinase production by ethyl methyl sulphonate (EMS)-induced mutant Brevibacillus sp. strain AS-S10-II and biodegradation of waste chicken-feather by a purified alkaline ??-keratinase from this mutant strain. When compared with wild strain, the mutant strain (EMS-05) exhibited better growth rate, less generation time and significantly higher rate (p < 0.010) of alkaline ??-keratinase production. Under scanning electron microscope, the EMS-05 strain displayed clear morphological variation. On the other hand, crude alkaline ??-keratinase from wild-type and EMS-05 strains did not differ on biochemical parameters such as thermostability, detergent stability, Km and Vmax values toward keratin. A purified alkaline ??-keratinase (Mukartinase MR) from EMS-05 strain displayed molecular weight of 55 kDa and presented Km and Vmax values toward keratin as 1.3 mg ml−1 and 19.8 ??mol min−1 mg−1, respectively. Although activity optima were noted at pH 9.0-10.0 and at 37 °C, Mukartinase MR is a serine protease displaying activity over a broad range of pH (5.0-11.0) and temperature (25-55 °C). SEM study revealed Mukartinase MR could degrade 78%-82% of feather-keratin post 48 h of incubation. The quantity of amino acids released from the Mukartinase MR treated feather-keratin was detected in the following order: cysteine > valine > threonine > lysine > isoleucine > phenylalanine ≈ methionine. Release of at least seven volatile compounds from chicken-feather post treatment with Mukartinase was indicated by GC-MS and MALDI-TOF-MS analyses. The lack of toxicity of purified alkaline ??-keratinase when tested on mammalian HT29 cells advocated its potential in industrial application on livestock feed formulation.  相似文献   

16.
Microbes and plants synthesize essential branched-chain amino acids (BCAAs) such as valine, leucine, and isoleucine via a common biosynthetic pathway in which the first reaction is catalyzed by acetohydroxyacid synthase (AHAS, EC 4.1.3.18). Recently, AHAS was identified as a potential anti bacterial target. To help find an effective inhibitor that could act as an antibacterial compound, we cloned and characterized the catalytic subunit (CSU) of Pseudomonas aeruginosa AHAS, and found four potent inhibitors through chemical library screening. The ilvI gene of P. aeruginosa encodes a 65-kDa AHAS protein, consistent with the size of the purified enzyme on SDS-PAGE. Enzyme kinetics showed that the enzyme has a Km of 14.2 mM and a specific activity of 0.12 U/mg. Enzyme activity was optimum at a temperature of 37 °C and a pH of 7.5. The Kd for thiamine diphosphate (ThDP) was 89.92 ± 17.9 μM, as determined by fluorescence quenching. The cofactor activation constants (Ks) for ThDP and (Kc) for Mg2+ were 0.6 ± 0.1 and 560.8 ± 7.4 μM, respectively. Further, we determined that AVS2087, AVS2093, AVS2236, and AVS2387 compounds are potent inhibitors of the catalytic subunit of P. aeruginosa AHAS. These compounds inhibit nearly 100% of AHAS activity, with IC50 values of 1.19 μM, 5.0 nM, 25 nM, and 13 nM, respectively. Compound AVS2093 showed growth inhibition with a minimal inhibitory concentration (MIC) of 742.9 μg/ml against P. aeruginosa strain ATCC 9027. Furthermore, these findings were supported by molecular docking studies with the AVS compounds against P. aeruginosa AHAS in which AVS2093 showed minimum binding energy (−7.8 kJ/mol) by interacting with the receptor through a single hydrogen bond of 2.873 Å. Correlation of AVS2093 activity with P. aeruginosa AHAS cell growth inhibition suggested that AHAS might serve as a target protein for the development of novel antibacterial therapeutics. Results of the current study provide an impetus to further evaluate the potency of these inhibitors against pathogenic P. aeruginosa strains in vivo and to design more potent antibacterial agents based on these AVS inhibitors.  相似文献   

17.
The model plant tobacco (Nicotiana tabacum L.) was chosen for a survey of the subunit composition of the V-ATPase at the protein level. V-ATPase was purified from tobacco leaf cell tonoplasts by solubilization with the nonionic detergent Triton X-100 and immunoprecipitation. In the purified fraction 12 proteins were present. By matrix-assisted laser-desorption ionization mass spectrometry (MALDI-MS) and amino acid sequencing 11 of these polypeptides could be identified as subunits A, B, C, D, F, G, c, d and three different isoforms of subunit E. The polypeptide which could not be identified by MALDI analysis might represent subunit H. The data presented here, for the first time, enable an unequivocal identification of V-ATPase subunits after gel electrophoresis and open the possibility to assign changes in polypeptide composition to variations in respective V-ATPase subunits occurring as a response to environmental conditions or during plant development.  相似文献   

18.
19.
20.
Gamma-glutamyltranspeptidases (γ-GTs) catalyze the transfer of the gamma-glutamyl moiety of glutathione and related gamma-glutamyl amides to water (hydrolysis) or to amino acids and peptides (transpeptidation) and play a key role in glutathione metabolism. Recently, γ-GTs have been considered attractive pharmaceutical targets for cancer and useful tools to produce γ-glutamyl compounds. To find out γ-GTs with special properties we have chosen microorganisms belonging to Geobacillus species which are source of several thermostable enzymes of potential interest for biotechnology. γ-GT from Geobacillus thermodenitrificans (GthGT) was cloned, expressed in Escherichia coli, purified to homogeneity and characterized. The enzyme, synthesized as a precursor homotetrameric protein of 61-kDa per subunit, undergoes an internal post-translational cleavage of the 61 kDa monomer into 40- and 21-kDa shorter subunits, which are then assembled into an active heterotetramer composed of two 40- and two 21-kDa subunits. The kinetic characterization of the hydrolysis reaction using l-glutamic acid γ-(4-nitroanilide) as the substrate reveals that the active enzyme has Km 7.6 μM and Vmax 0.36 μmol min/mg. The optimum pH and temperature for the hydrolysis activity are 7.8 and 52 °C, respectively. GthGT hydrolyses the physiological antioxidant glutathione, suggesting an involvement of the enzyme in the cellular defense mechanism against oxidative stress. Unlike other γ-GTs, the mutation of the highly conserved catalytic nucleophile, Thr353, abolishes the post-translational cleavage of the pro-enzyme, but does not completely block the hydrolytic action. Furthermore, GthGT does not show any transpeptidase activity, suggesting that the enzyme is a specialized γ-glutamyl hydrolase. The GthGT homology-model structure reveals peculiar structural features, which should be responsible for the different functional properties of the enzyme and suggests the structural bases of protein thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号