首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Jacalin-related lectins (JRLs) are carbohydrate-binding proteins widely present in plants and have one or more jacalin domains in common. However, JRLs’ structural types and functions are still poorly understood. In the present study, a total of 67 wheat (Triticum aestivum) JRL genes were identified through an exhausted search of EST database coupling with genome walking using published 454 sequence reads of Chinese Spring. A comparison of the translated wheat JRL proteins with those from other plants showed plant JRLs generally had low sequence similarity within and between species but exhibited conserved modular domain structures. More JRL genes encoded multiple jacalin domains in Arabidopsis thaliana, whereas more genes encoded chimeric JRLs in cereal plants. Dirigent domain-containing JRL genes were Poaceae-specific and accounted for nearly half of the identified wheat JRL genes. The dirigent domains were evolutionarily significantly correlated with the covalently linked jacalin domains. A phylogenetic analysis showed JRL proteins have experienced a substantial diversification after speciation. Moreover, new structural features conserved across the taxa were identified. Digital expression analysis and RT-PCR assays showed the expression of wheat JRL genes was largely tissue specific, typically low, and mostly inducible by biotic and abiotic stresses and stress hormones. These results suggest plant JRLs are critical for plant adaptation to stressful environments.  相似文献   

4.
In certain maize genotypes, called "null," beta-glucosidase does not enter gels and therefore cannot be detected on zymograms after electrophoresis. Such genotypes were originally thought to be homozygous for a null allele at the glu1 gene and thus devoid of enzyme. We have shown that a beta-glucosidase-aggregating factor (BGAF) is responsible for the "null" phenotype. BGAF is a chimeric protein consisting of two distinct domains: the disease response or "dirigent" domain and the jacalin-related lectin (JRL) domain. First, it was not known whether the lectin domain in BGAF is functional. Second, it was not known which of the two BGAF domains is involved in beta-glucosidase binding and aggregation. To this end, we purified BGAF to homogeneity from a maize null inbred line called H95. The purified protein gave a single band on SDS-PAGE, and the native protein was a homodimer of 32-kDa monomers. Native and recombinant BGAF (produced in Escherichia coli) agglutinated rabbit erythrocytes, and various carbohydrates and glycoproteins inhibited their hemagglutination activity. Sugars did not have any effect on the binding of BGAF to the beta-glucosidase isozyme 1 (Glu1), and the BGAF-Glu1 complex could still bind lactosyl-agarose, indicating that the sugar-binding site of BGAF is distinct from the beta-glucosidase-binding site. Neither the dirigent nor the JRL domains alone (produced separately in E. coli) produced aggregates of Glu1 based on results from pull-down assays. However, gel shift and competitive binding assays indicated that the JRL domain binds beta-glucosidase without causing it to aggregate. These results with those from deletion mutagenesis and replacement of the JRL domain of a BGAF homolog from sorghum, which does not bind Glu1, with that from maize allowed us to conclude that the JRL domain of BGAF is responsible for its lectin and beta-glucosidase binding and aggregating activities.  相似文献   

5.
Maize β-glucosidase aggregating factor (BGAF) and its homolog Sorghum Lectin (SL) are modular proteins consisting of an N-terminal dirigent domain and a C-terminal jacalin-related lectin (JRL) domain. BGAF is a polyspecific lectin with a monosaccharide preference for galactose, whereas SL displays preference for GalNAc. Here, we report that deletion of the N-terminal dirigent domain in the above lectins dramatically changes their sugar-specificities. Deletions in the N-terminal region of the dirigent domain of BGAF abolished binding to galactose/lactose, but binding to mannose was unaffected. Glucose, which was a poor inhibitor of hemagglutinating activity of BGAF, displayed higher inhibitory effect on the hemagglutinating activity of deletion mutants. Deletion of the dirigent domain in SL abolished binding to GalNAc, but binding to mannose was not affected. Surprisingly, fructose, an extremely poor inhibitor (minimum inhibitory concentration (MIC) = 125 mM) of SL hemagglutinating activity, was found to be a very potent inhibitor (MIC = 1 mM) of hemagglutinating activity of its JRL domain. These results indicate that the dirigent domain in this class of modular lectins, at least in the case of maize BGAF and SL, influences sugar specificity.  相似文献   

6.
7.
8.
Discoidin I (DiscI) and discoidin II (DiscII) are N-acetylgalactosamine (GalNAc)-binding proteins from Dictyostelium discoideum. They consist of two domains: an N-terminal discoidin domain and a C-terminal H-type lectin domain. They were cloned and expressed in high yield in recombinant form in Escherichia coli. Although both lectins bind galactose (Gal) and GalNAc, glycan array experiments performed on the recombinant proteins displayed strong differences in their specificity for oligosaccharides. DiscI and DiscII bind preferentially to Gal/GalNAcβ1-3Gal/GalNAc-containing and Gal/GalNAcβ1-4GlcNAcβ1-6Gal/GalNAc-containing glycans, respectively. The affinity of the interaction of DiscI with monosaccharides and disaccharides was evaluated using isothermal titration calorimetry experiments. The three-dimensional structures of native DiscI and its complexes with GalNAc, GalNAcβ1-3Gal, and Galβ1-3GalNAc were solved by X-ray crystallography. DiscI forms trimers with involvement of calcium at the monomer interface. The N-terminal discoidin domain presents a structural similarity to F-type lectins such as the eel agglutinin, where an amphiphilic binding pocket suggests possible carbohydrate-binding activity. In the C-terminal H-type lectin domain, the GalNAc residue establishes specific hydrogen bonds that explain the observed affinity (Kd = 3 × 10− 4 M). The different specificities of DiscI and DiscII for oligosaccharides were rationalized from the different structures obtained by either X-ray crystallography or molecular modeling.  相似文献   

9.
10.
Transgenic Arabidopsis plants carrying a recombinant human estrogen receptor gene and a green fluorescent protein reporter gene were used to bioassay estrogenic compounds. We constructed four recombinant human estrogen receptor genes by combining the DNA-binding domain of LexA, a synthetic nuclear localization signal, a ligand-binding domain of the human estrogen receptor, and a transactivation domain of VP16 in different orders; the XEV plants were the most sensitive, and were able to detect 0.001 ng ml?1 of 17ß-estradiol (E2). The transgenic plants absorbed E2 and 4-nonylphenol present in the nutrient solution, whereas most of the other compounds seemed to be retained in, or on, the roots. Estrone, methoxychlor, bisphenol A, 4-nonylphenol, and 4-t-octylphenol in the medium were clearly detected by RT-PCR and PCR of the genomic DNA. The transgenic Arabidopsis XEV plants thus have potential for the bioassay of estrogenic compounds.  相似文献   

11.
Mammalian sperm acquire fertility through a functional maturation process called capacitation, where sperm membrane molecules are drastically remodeled. In this study, we found that a wheat germ agglutinin (WGA)-reactive protein on lipid rafts, named WGA16, is removed from the sperm surface on capacitation. WGA16 is a prostate-derived seminal plasma protein that has never been reported and is deposited on the sperm surface in the male reproductive tract. Based on protein and cDNA sequences for purified WGA16, it is a homologue of human zymogen granule protein 16 (ZG16) belonging to the Jacalin-related lectin (JRL) family in crystal and primary structures. A glycan array shows that WGA16 binds heparin through a basic patch containing Lys-53/Lys-73 residues but not the conventional lectin domain of the JRL family. WGA16 is glycosylated, contrary to other ZG16 members, and comparative mass spectrometry clearly shows its unique N-glycosylation profile among seminal plasma proteins. It has exposed GlcNAc and GalNAc residues without additional Gal residues. The GlcNAc/GalNAc residues can work as binding ligands for a sperm surface galactosyltransferase, which actually galactosylates WGA16 in situ in the presence of UDP-Gal. Interestingly, surface removal of WGA16 is experimentally induced by either UDP-Gal or heparin. In the crystal structure, N-glycosylated sites and a potential heparin-binding site face opposite sides. This geography of two functional sites suggest that WGA16 is deposited on the sperm surface through interaction between its N-glycans and the surface galactosyltransferase, whereas its heparin-binding domain may be involved in binding to sulfated glycosaminoglycans in the female tract, enabling removal of WGA16 from the sperm surface.  相似文献   

12.
Expansins are proteins that are the key regulators of wall extension during plant growth. To investigate the role of TaEXPB23, a wheat expansin gene, we analyzed TaEXPB23 mRNA expression levels in response to water stress in wheat and examined the drought resistance of transgenic tobaccos over-expressing TaEXPB23. We found that the expression of TaEXPB23 corresponded to wheat coleoptile growth and the response to water stress. The results also indicated that the transgenic tobacco lines lost water more slowly than the wild-type (WT) plants under drought stress; their cells could sustain a more integrated structure under water stress than that of WT. Other physiological and biochemical parameters under water stress, such as electrolyte leakage, malondialdehyde (MDA) level, photosynthetic rate, Fv/Fm and ΦPSII, also suggested that the transgenic tobaccos were more drought resistant than WT plants.  相似文献   

13.
我国部分地区土地盐碱化的日益严重,对作物的生长和生态环境产生了显著影响,因此通过植物基因工程手段培育耐盐碱的转基因作物品种对改善作物的生存能力和生态环境,提高作物产量具有重要的意义。采用农杆菌介导法将来自小麦(Triticum aestivum Linn)的Na+ /H+逆向转运蛋白的基因(vacuolar Na+/H+ exchanger or antiporter,简称NHX、NHE或NHA),对普那菊苣(Cichorium intybus L.cv.Puna)植株进行了遗传转化。经抗生素筛选以及针对TaNHX2基因的PCR检测和Southern杂交分析,证明获得了28株转TaNHX2基因的普那菊苣植株。用不同浓度NaCl溶液对普那菊苣野生型和T0代种子、愈伤组织和幼苗生长情况胁迫的研究,结果表明:转TaNHX2基因普那菊苣植株表现出一定的抗性,比野生型明显提高。在300 mmol/L NaCl胁迫下转基因植株种子的出芽率、外植体出愈率和分化率是野生型植株的2-4倍,而500 mmol/L NaCl浓度为野生型和转基因外植体能否生长的临界点。在此临界值下野生型外植体或不能形成愈伤组织、或幼苗不能正常生根、或已生根幼苗不能正常成长,而转基因外植体可以继续形成愈伤组织并正常生根生长。同时对500 mmol/L NaCl胁迫下野生型和转基因普那菊苣幼苗其体内丙二醛含量(MDA)、过氧化氢酶(POD)和超氧化物歧化酶(SOD)活性进行测定,结果表明 转基因植株比野生型植株的MDA含量降低了1-3倍,POD活性提高了1-3倍,SOD活性提高了2-3倍,分析发现普那菊苣的耐盐性与其体内的丙二醛含量(MDA)、过氧化氢酶(POD)和超氧化物歧化酶(SOD)活性密切相关。  相似文献   

14.
15.
Calreticulin (CRT) is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum) remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants.  相似文献   

16.
17.
Maize (Zea mays), in common with a number of other important crop species, has several glutathione S-transferase (GST) isoforms that have been implicated in the detoxification of xenobiotics via glutathione conjugation. A cDNA encoding the maize GST subunit GST-27, under the control of a strong constitutive promoter, was introduced into explants of the wheat (Triticum aestivum L.) lines cv. Florida and L88-31 via particle bombardment, using the phosphinothricin acetyltransferase (pat) gene as a selectable marker. All six independent transgenic wheat lines recovered expressed the GST-27 gene. T1 progeny of these wheat lines were germinated on solid medium containing the chloroacetanilide herbicide alachlor, and tolerance to this herbicide was correlated with GST-27 expression levels. In glasshouse sprays, homozygous T2 plants were resistant not only to alachlor but also to the chloroacetanilide herbicide dimethenamid and the thiocarbamate herbicide EPTC. These additional GST-27 activities, demonstrated via over-expression in a heterologous host, have not been described previously. T2 plants showed no enhanced tolerance to the herbicides atrazine (an s-triazine) or oxyfluorfen (a diphenyl ether). In further experiments, T2 wheat plants were recovered from immature transgenic scutella cultured on medium containing 100 mg/l alachlor, a concentration which killed null segregant and wild-type scutella. These data indicate the potential of the maize GST-27 gene as a selectable marker in wheat transformation.  相似文献   

18.
Large number of primary transgenic events were generated in groundnut by an Agrobacterium mediated, in planta transformation method to assess the efficacy of cry1AcF against the Spodoptera litura. The amplification of required size fragment of 750 bp with npt II primers and 901 bp with cry1AcF gene primers confirmed the integration of the gene. The expression of the cry gene was ascertained by ELISA in T2 generation, and the maximum concentration of cry protein in transgenic plants reached approximately 0.82 μg/g FW. Further, Southern blot analysis of ten T2 transgenic plants proved that transgene had been integrated in the genome of all the plants and Northern analysis of the same plants demonstrated the active expression of cry1AcF gene. The highest mean % larval mortalities 80.0 and 85.0 with an average mean % larval mortalities 16.25 (n = 369) and 26.0 (n = 80) were recorded in T1 and T2 generations, respectively. Segregation analysis of the selected lines in the T3 generation demonstrated homozygous nature. This clearly proved that though there is considerable improvement in average mean % larval mortality in T2 generation, the cry1AcF gene was effective against S. litura only to some extent.  相似文献   

19.
20.
Phosphoenolpyruvate carboxylase (PEPC) is known to play a key role in the initial fixation of CO2 in C4 photosynthesis. The PEPC gene from sugarcane (a C4 plant) was introduced into indica rice (Hang2), a process mediated by Agrobacterium tumefaciens. Integration patterns and copy numbers of the gene was confirmed by DNA blot analysis. RT-PCR and western blotting results showed that the PEPC gene was expressed at both the mRNA and protein levels in the transgenic lines. Real-time PCR results indicated that expression of the sugarcane PEPC gene occurred mostly in green tissues and changed under high temperature and drought stress. All transgenic lines showed higher PEPC enzyme activities compared to the untransformed controls, with the highest activity (11.1 times higher than the controls) being observed in the transgenic line, T34. The transgenic lines also exhibited higher photosynthetic rates. The highest photosynthetic rate was observed in the transgenic line, T54 (22.3 μmol m?2 s?1; 24.6 % higher than that in non-transgenic plants) under high-temperature conditions. Furthermore, the filled grain and total grain numbers for transgenic lines were higher than those for non-transgenic plants, but the grain filling (%) and 1,000-grain weights of all transgenic lines remained unchanged. We concluded that over-expression of the PEPC gene from sugarcane in indica rice (Hang2) resulted in higher PEPC enzyme activities and higher photosynthesis rates under high-temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号