首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosaminoglycans (GAGs) are linear anionic polysaccharides, and most of them show a specific sulfation pattern. GAGs have been studied for decades, and still, new biological functions are discovered. Hyaluronic acid and heparin are sold for medical or cosmetic applications. With increased market and applications, the production of GAGs stays in the focus of research groups and the industry. Common industrial GAG production relies on the extraction of animal tissue. Contamination, high dispersity, and uncontrolled sulfation pattern are still obstacles to this process. Tailored production strategies for the chemoenzymatic synthesis have been developed to address these obstacles. In recent years, enzyme cascades, including uridine-5′-diphosphate sugar syntheses, were established to obtain defined polymer size and dispersity, as well as defined sulfation patterns. Nevertheless, the complex synthesis of GAGs is still a challenging research field.  相似文献   

2.
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant deposition of extracellular matrix (ECM) constituents, including glycosaminoglycans (GAGs), that may play a role in remodelling processes by influencing critical mediators such as growth factors. We hypothesize that GAGs may be altered in IPF and that this contribute to create a pro-fibrotic environment. The aim of this study was therefore to examine the fine structure of heparan sulfate (HS), chondroitin/dermatan sulfate (CS/DS) and hyaluronan (HA) in lung samples from IPF patients and from control subjects. GAGs in lung samples from severe IPF patients and donor lungs were analyzed with HPLC. HS was assessed by immunohistochemistry and collagen was quantified as hydroxyproline content. The total amount of HS, CS/DS and HA was increased in IPF lungs but there was no significant difference in the total collagen content. We found a relative increase in total sulfation of HS due to increment of 2-O, 6-O and N-sulfation and a higher proportion of sulfation in CS/DS. Highly sulfated HS was located in the border zone between denser areas and more normal looking alveolar parenchyma in basement membranes of blood vessels and airways, that were immuno-positive for perlecan, as well as on the cell surface of spindle-shaped cells in the alveolar interstitium. These findings show for the first time that both the amount and structure of glycosaminoglycans are altered in IPF. These changes may contribute to the tissue remodelling in IPF by altering growth factor retention and activity, creating a pro-fibrotic ECM landscape.  相似文献   

3.
Cell volume is regulated by a delicate balance between ion distribution across the plasma membrane and the osmotic properties of intra‐ and extracellular components. Using a fluorescent calcein indicator, we analysed the effects of glycosaminoglycans on the cell volume of hyaluronan producing fibroblasts and hyaluronan deficient HEK cells over a time period of 30 h. Exogenous glycosaminoglycans induced cell blebbing after 2 min and swelling of fibroblasts to about 110% of untreated cell volume at low concentrations which decreased at higher concentrations. HEK cells did not show cell blebbing and responded by shrinking to 65% of untreated cell volume. Heparin induced swelling of both fibroblasts and HEK cells. Hyaluronidase treatment or inhibition of hyaluronan export led to cell shrinkage indicating that the hyaluronan coat maintained fibroblasts in a swollen state. These observations were explained by the combined action of the Donnan effect and molecular crowding. J. Cell. Biochem. 113: 340–348, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
The commonly used food additive carrageenan, including lambda (λ), kappa (κ) and iota (ι) forms, is composed of galactose disaccharides linked in alpha-1,3 and beta-1,4 glycosidic bonds with up to three sulfate groups per disaccharide residue. Carrageenan closely resembles the endogenous galactose or N-acetylgalactosamine-containing glycosaminoglycans (GAGs), chondroitin sulfate (CS), dermatan sulfate (DS), and keratan sulfate. However, these GAGs have beta-1,3 and beta-1,4 glycosidic bonds, in contrast to the unusual alpha-1,3 glycosidic bond in carrageenan. Since sulfatase activity is inhibited by sulfate, and carrageenan is so highly sulfated, we tested the effect of carrageenan exposure on sulfatase activity in human intestinal and mammary epithelial cell lines and found that carrageenan exposure significantly reduced the activity of sulfatases, including N-acetylgalactosamine-4-sulfatase, galactose-6-sulfatase, iduronate sulfatase, steroid sulfatase, arylsulfatase A, SULF-1,2, and heparan sulfamidase. Consistent with the inhibition of sulfatase activity, following exposure to carrageenan, GAG content increased significantly and showed marked differences in disaccharide composition. Specific changes in CS disaccharides included increases in di-sulfated disaccharide components of CSD (2S6S) and CS-E (4S6S), with declines in CS-A (4S) and CS-C (6S). Specific changes in heparin-heparan sulfate disaccharides included increases in 6S disaccharides, as well as increases in NS and 2S6S disaccharides. Study results suggest that carrageenan inhibition of sulfatase activity leads to re-distribution of the cellular GAG composition with increase in di-sulfated CS and with potential consequences for cell structure and function.  相似文献   

5.
Abstract Heparan sulphate binding to Helicobacter pylori at pH 4 to 5 was inhibited with various sulphated polysaccharides (heparin and chondroitin sulphates, fucoidan, carrageenans and some others), but not by carboxylated or nonsulphated compounds. Heparin binding proteins are exposed on the cell surface.  相似文献   

6.
The platelet-derived growth factor (PDGF) family comprises disulfide-bonded dimeric isoforms and plays a key role in the proliferation and migration of mesenchymal cells. Traditionally, it consists of homo- and heterodimers of A and B polypeptide chains that occur as long (AL and BL) or short (AS and BS) isoforms. Short isoforms lack the basic C-terminal extension that mediates binding to heparin. In the present study, we show that certain PDGF isoforms bind in a specific manner to glycosaminoglycans (GAGs). Experiments performed with wild-type and mutant Chinese hamster ovary cells deficient in the synthesis of GAGs revealed that PDGF long isoforms bind to heparan sulfate and chondroitin sulfate, while PDGF short isoforms only bind to heparan sulfate. This was confirmed by digestion of cell surface GAGs with heparitinase and chondroitinase ABC and by incubation with sodium chloride to prevent GAG sulfation. Furthermore, exogenous GAGs inhibited the binding of long isoforms to the cell membrane more efficiently than that of short isoforms. Additionally, we performed surface plasmon resonance experiments to study the inhibition of PDGF isoforms binding to low molecular weight heparin by GAGs. These experiments showed that PDGF-AAL and PDGF-BBS isoforms bound to GAGs with the highest affinity. In conclusion, PDGF activity at the cell surface may depend on the expression of various cellular GAG species.  相似文献   

7.
A plate method for demonstrating the breakdown of heparin and chondroitin sulphate by bacteria is described. The medium contained phytone, yeast extract and either heparin or chondroitin sulphate as organic nutrients. Sulphate, which is released by the breakdown of heparin or chondroitin sulphate, combined with barium chloride in the medium to form a white precipitate of barium sulphate on the plates.  相似文献   

8.
Rat liver parenchymal cells were evaluated after 2 days of primary culture for their ability to synthesize and accumulate heparan sulfate as the major component and low-sulfated chondroitin sulfate, dermatan sulfate, chondroitin sulfate and hyaluronic acid as the minor ones. The newly synthesized glycosaminoglycans secreted into the medium were different from those remaining with and/or on the cell layer. Low-sulfated chondroitin 4-sulfate, a major glycosaminoglycan in blood, was synthesized in the order of 320 μg/liver per day, more than 90% of which was secreted into the medium within 16 h and 40% of the glycan secreted was degraded during that time. On the other hand, heparan sulfate, the major glycosaminoglycan synthesized by the parenchymal cells, was mainly distributed in the cell layer. After 8 days of culture, the synthesis of glycosaminoglycans by the cells increased markedly, especially dermatan sulfate, chondroitin sulfate and hyaluronic acid.  相似文献   

9.
We have recently demonstrated that the transfer of heavy chains (HCs) from inter-α-inhibitor, via the enzyme TSG-6 (tumor necrosis factor-stimulated gene 6), to hyaluronan (HA) oligosaccharides is an irreversible event in which subsequent swapping of HCs between HA molecules does not occur. We now describe our results of HC transfer experiments to chondroitin sulfate A, chemically desulfated chondroitin, chemoenzymatically synthesized chondroitin, unsulfated heparosan, heparan sulfate, and alginate. Of these potential HC acceptors, only chemically desulfated chondroitin and chemoenzymatically synthesized chondroitin were HC acceptors. The kinetics of HC transfer to chondroitin was similar to HA. At earlier time points, HCs were more widely distributed among the different sizes of chondroitin chains. As time progressed, the HCs migrated to lower molecular weight chains of chondroitin. Our interpretation is that TSG-6 swaps the HCs from the larger, reversible sites on chondroitin chains, which function as HC acceptors, onto smaller chondroitin chains, which function as irreversible HC acceptors. HCs transferred to smaller chondroitin chains were unable to be swapped off the smaller chondroitin chains and transferred to HA. HCs transferred to high molecular weight HA were unable to be swapped onto chondroitin. We also present data that although chondroitin was a HC acceptor, HA was the preferred acceptor when chondroitin and HA were in the same reaction mixture.  相似文献   

10.
Glycosaminoglycans (GAGs) expressed ubiquitously on the cell surface are known to interact with a variety of ligands to mediate different cellular processes. However, their role in the internalization of cationic gene delivery vectors such as liposomes, polymers, and peptides is still ambiguous and seems to be controlled by multiple factors. In this report, taking peptides as model systems, we show that peptide chemistry is one of the key factors that determine the dependence on cell surface glycosaminoglycans for cellular internalization and gene delivery. Arginine peptides and their complexes with plasmid DNA show efficient uptake and functional gene transfer independent of the cell surface GAGs. On the other hand, lysine peptides and complexes primarily enter through a GAG-dependent pathway. The peptide-DNA complexes also show differential interaction with soluble GAGs. In the presence of exogenous GAGs under certain conditions, arginine peptide-DNA complexes show increased transfection efficiency that is not observed with lysine. This is attributed to a change in the complex nature that ensures better protection of the compacted DNA in the case of arginine complexes, whereas the lysine complexes get destabilized under these conditions. The presence of a GAG coating also ensures better cell association of arginine complexes, resulting in increased uptake. Our results indicate that the role of both the cell surface and exogenous glycosaminoglycans in gene delivery is controlled by the nature of the peptide and its complex with DNA.  相似文献   

11.
Despite their key role in inflammation, the apparent redundancy in the chemokine system is often cited as an argument against probing chemokines as therapeutic targets for inflammation. However, this in vitro redundancy frequently does not translate to the in vivo situation, as exemplified by the use of specific receptor antagonists, ligand neutralizing or receptor blocking antibodies and gene-deleted mice in models of human disease. Specificity may be conferred onto the chemokine system by fine-tuning of responses both temporally and spatially through their highly specific interactions with glycosaminoglycans (GAGs). In this survey, we present evidence for specificity in the interaction and introduce emerging technologies that enable detailed assessment of protein–GAG interactions. Finally, we address the issue of exploitation of this interaction for therapeutic advantage.  相似文献   

12.
Collagen-fibronectin complexes, formed by binding of fibronectin to gelatin or collagen insolubilized on Sepharose, were found to bind 20–40% of radioactivity in [35S]heparin. Fibronectin attached directly to Sepharose also bound [35S]heparin, while gelatin-Sepharose without fibronectin did not. Unlabeled heparin and highly sulfated heparan sulfate efficiently inhibited the binding of [35S]heparin, hyaluronic acid and dermatan sulfate were slightly inhibitory, while chondroitin sulfates and heparan sulfate with a low sulfate content did not inhibit.The interaction of heparin with fibronectin bound to gelatin resulted in complexes which required higher concentrations of urea to dissociate than complexes of fibronectin and gelatin alone. Heparin as well as highly sulfated heparan sulfate and hyaluronic acid brought about agglutination of plastic beads coated with gelatin when fibronectin was present. Neither fibronectin nor glycosaminoglycans alone agglutinated the beads.It is proposed that the multiple interactions of fibronectin, collagen and glycosaminoglycans revealed in these assays could play a role in the deposition of these substances as an insoluble extracellular matrix. Alterations of the quality or quantity of any one of these components could have important effects on cell surface interactions, including the lack of cell surface fibronectin in malignant cells.  相似文献   

13.
Extracellular matrix molecules such as glycosaminoglycans (GAGs) are typical targets for some pathogenic bacteria, which allow adherence to host cells. Bacterial polysaccharide lyases depolymerize GAGs in β-elimination reactions, and the resulting unsaturated disaccharides are subsequently degraded to constituent monosaccharides by unsaturated glucuronyl hydrolases (UGLs). UGL substrates are classified as 1,3- and 1,4-types based on the glycoside bonds. Unsaturated chondroitin and heparin disaccharides are typical members of 1,3- and 1,4-types, respectively. Here we show the reaction modes of bacterial UGLs with unsaturated heparin disaccharides by x-ray crystallography, docking simulation, and site-directed mutagenesis. Although streptococcal and Bacillus UGLs were active on unsaturated heparin disaccharides, those preferred 1,3- rather than 1,4-type substrates. The genome of GAG-degrading Pedobacter heparinus encodes 13 UGLs. Of these, Phep_2830 is known to be specific for unsaturated heparin disaccharides. The crystal structure of Phep_2830 was determined at 1.35-Å resolution. In comparison with structures of streptococcal and Bacillus UGLs, a pocket-like structure and lid loop at subsite +1 are characteristic of Phep_2830. Docking simulations of Phep_2830 with unsaturated heparin disaccharides demonstrated that the direction of substrate pyranose rings differs from that in unsaturated chondroitin disaccharides. Acetyl groups of unsaturated heparin disaccharides are well accommodated in the pocket at subsite +1, and aromatic residues of the lid loop are required for stacking interactions with substrates. Thus, site-directed mutations of the pocket and lid loop led to significantly reduced enzyme activity, suggesting that the pocket-like structure and lid loop are involved in the recognition of 1,4-type substrates by UGLs.  相似文献   

14.
Homeostasis of connective joint tissues depends on the maintenance of an extracellular matrix, consisting of an integrated assembly of collagens, glycoproteins, proteoglycans, and glycosaminoglycans (GAGs). Isomeric chondroitin sulfate (CS) glycoforms differing in position and degree of sulfation and uronic acid epimerization play specific and distinct functional roles during development and disease onset. This work profiles the CS epitopes expressed by different joint tissues as a function of age and osteoarthritis. GAGs were extracted from joint tissues (cartilage, tendon, ligment, muscle, and synovium) and partially depolymerized using chondroitinase enzymes. The oligosaccharide products were differentially stable isotope labeled by reductive amination using 2-anthranilic acid-d(0) or -d(4) and subjected to amide-hydrophilic interaction chromatography (HILIC) online LC-MS/MS. The analysis presented herein enables simultaneous profiling of the expression of nonreducing end, linker region, and Delta-unsaturated interior oligosaccharide domains of the CS chains among the different joint tissues. The results provide important new information on the changes to the expression of CS GAG chains during disease and development.  相似文献   

15.
Altered expression of chondroitin sulfate (CS) and heparan sulfate (HS) at the surfaces of tumor cells plays a key role in malignant transformation and tumor metastasis. Previously we demonstrated that a Lewis lung carcinoma (LLC)-derived tumor cell line with high metastatic potential had a higher proportion of E-disaccharide units, GlcUA-GalNAc(4,6-O-disulfate), in CS chains than low metastatic LLC cells and that such CS chains are involved in the metastatic process. The metastasis was markedly inhibited by the pre-administration of CS-E from squid cartilage rich in E units or by preincubation with a phage display antibody specific for CS-E. However, the molecular mechanism of the inhibition remains to be investigated. In this study the receptor molecule for CS chains containing E-disaccharides expressed on LLC cells was revealed to be receptor for advanced glycation end products (RAGE), which is a member of the immunoglobulin superfamily predominantly expressed in the lung. Interestingly, RAGE bound strongly to not only E-disaccharide, but also HS-expressing LLC cells. Furthermore, the colonization of the lungs by LLC cells was effectively inhibited by the blocking of CS or HS chains at the tumor cell surface with an anti-RAGE antibody through intravenous injections in a dose-dependent manner. These results provide the clear evidence that RAGE is at least one of the critical receptors for CS and HS chains expressed at the tumor cell surface and involved in experimental lung metastasis and that CS/HS and RAGE are potential molecular targets in the treatment of pulmonary metastasis.  相似文献   

16.
We compare here the structural and functional properties of heparan sulfate (HS) chains from both male or female adult mouse liver through a combination of molecular sieving, enzymatic cleavage, and strong anion exchange-HPLC. The results demonstrated that male and female HS chains are significantly different by a number of parameters; size determination showed that HS chain lengths were ~100 and ~22 kDa, comprising 30-40 and 6-8 disaccharide repeats, respectively. Enzymatic depolymerization and disaccharide composition analyses also demonstrated significant differences in domain organization and fine structure. N-Unsubstituted glucosamine (ΔHexA-GlcNH(3)(+), ΔHexA-GlcNH(3)(+)(6S), ΔHexA(2S)-GlcNH(3)(+), and N-acetylglucosamine (ΔHexA-GlcNAc) are the predominant disaccharides in male mouse liver HS. However, N-sulfated glucosamine (ΔHexA-GlcNSO(3)) is the predominant disaccharide found in female liver. These structurally different male and female liver HS forms exert differential effects on human mesenchymal cell proliferation and subsequent osteogenic differentiation. The present study demonstrates the potential usefulness of gender-specific liver HS for the manipulation of human mesenchymal cell properties, including expansion, multipotentiality, and subsequent matrix mineralization. Our results suggest that HS chains show both tissue- and gender-specific differences in biochemical composition that directly reflect their biological activity.  相似文献   

17.
Chondroitin sulfate (CS) and dermatan sulfate (DS) containing N-acetylgalactosamine 4,6-bissulfate (GalNAc(4,6-SO4)) show various physiological activities through interacting with numerous functional proteins. N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3′-phosphoadenosine 5′-phosphosulfate to position 6 of N-acetylgalactosamine 4-sulfate in CS or DS to yield GalNAc(4,6-SO4) residues. We here report generation of transgenic mice that lack GalNAc4S-6ST. GalNAc4S-6ST-null mice were born normally and fertile. In GalNAc4S-6ST-null mice, GalNAc(4,6-SO4) residues in CS and DS disappeared completely, indicating that GalNAc4S-6ST should be a sole enzyme responsible for the synthesis of GalNAc(4,6-SO4) residues in both CS and DS. IdoA-GalNAc(4,6-SO4) units that account for ∼40% of total disaccharide units of DS in the liver of the wild-type mice disappeared in the liver DS of GalNAc4S-6ST-null mice without reduction of IdoA content. Bone marrow-derived mast cells (BMMCs) derived from GalNAc4S-6ST-null mice contained CS without GlcA-GalNAc(4,6-SO4) units. Tryptase and carboxypeptidase A activities of BMMCs derived from GalNAc4S-6ST-null mice were lower than those activities of BMMCs derived from wild-type mice, although mRNA expression of these mast cell proteases was not altered. Disaccharide compositions of heparan sulfate/heparin contained in the mast cells derived from BMMCs in the presence of stem cell factor were much different from those of heparan sulfate/heparin in BMMCs but did not differ significantly between wild-type mice and GalNAc4S-6ST-null mice. These observations suggest that CS containing GalNAc(4,6-SO4) residues in BMMCs may contribute to retain the active proteases in the granules of BMMCs but not for the maturation of BMMCs into connective tissue-type mast cells.  相似文献   

18.
The characterization of sulfated glycosaminoglycans (GAGs) in hematophagous arthropod vectors in general has been limited, with the exception of the studies in the triatomine Rhodnius prolixus. Heparan sulfate (HS) and chondroitin sulfate (CS) were previously identified and structurally characterized in extracts of whole bodies of fourth instar larvae of R. prolixus. Recently, we showed the expression of these two sulfated GAGs in specific body tissues of adult males and females and in embryos of R. prolixus. In the present work, we identified and compared the sulfated GAG composition in specific tissues of adult insects and in embryos of another triatomine species, Triatoma brasiliensis. Sulfated GAGs were isolated from the fat body, intestinal tract, and the reproductive tracts of adult insects and from embryos. Only HS and CS were found in the tissues analyzed. The present results extend the initial observations on the sulfated GAG composition in R. prolixus by showing that these molecules are widely distributed among internal organs of triatomines. These observations may be useful for future investigations aiming to evaluate the possible implication of these compounds in physiological events that take place in a specific organ(s) in these insects.  相似文献   

19.
Atomic force microscopy was used in ambient conditions to directly image dense and sparse monolayers of bovine fetal epiphyseal and mature nasal cartilage aggrecan macromolecules adsorbed on mica substrates. Distinct resolution of the non-glycosylated N-terminal region from the glycosaminoglycan (GAG) brush of individual aggrecan monomers was achieved, as well as nanometer-scale resolution of individual GAG chain conformation and spacing. Fetal aggrecan core protein trace length (398+/-57 nm) and end-to-end length (257+/-87 nm) were both larger than that of mature aggrecan (352+/-88 and 226+/-81 nm, respectively). Similarly, fetal aggrecan GAG chain trace length (41+/-7 nm) and end-to-end (32+/-8 nm) length were both larger than that of mature aggrecan GAG (32+/-5 and 26+/-7 nm, respectively). GAG-GAG spacing along the core protein was significantly smaller in fetal compared to mature aggrecan (3.2+/-0.8 and 4.4+/-1.2nm, respectively). Together, these differences between the two aggrecan types were likely responsible for the greater persistence length of the fetal aggrecan (110 nm) compared to mature aggrecan (82 nm) calculated using the worm-like chain model. Measured dimensions and polymer statistical analyses were used in conjunction with the results of Western analyses, chromatographic, and carbohydrate electrophoresis measurements to better understand the dependence of aggrecan structure and properties on its constituent GAG chains.  相似文献   

20.
The influence of exogenously-added glycosaminoglycans and glycoproteins on DNA synthesis in isolated nuclei, from normal and malignant tissues, was investigated. Heparin stimulated DNA synthesis in normal cell nuclei at concentrations (heparin/DNA (w/w) <0.9) which inhibited DNA synthesis in tumor cell nuclei. At higher concentrations (heparin/DNA (w/w) > 0.9) heparin inhibited DNA synthesis in both normal and tumor cell nuclei. The chondroitin-4 and 6-sulfates, heparan sulfate, cartilage proteoglycan, N-desulfated heparin, and glycophorin caused inhibition of DNA synthesis at all concentrations tested and in all nuclei examined. Hyaluronic acid, dermatan sulfate, keratan sulfate, α1-acid glycoprotein and fetuin had no significant influence on DNA synthesis in isolated nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号