首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we show, that the in vivo methylation of the elongation factor Tu from Escherichia coli is correlated with the growth phase of the bacterium. Methylation occurs at one position only, i.e. Lys-56, and initially results in monomethylation during logarithmic growth. Upon entering the stationary phase of E. coli, monomethyllysine is gradually converted into dimethyllysine. We have undertaken an extensive comparison between the properties of the highly methylated EF-Tu and unmodified EF-Tu. No gross conformational differences, as measured by the rate of mild tryptic cleavage, were observed. The dissociation rates of the nucleotides GDP and GTP appear likewise to be unaffected by the methylation, just as is the stimulatory effect of the elongation factor Ts upon these rates. Whereas tRNA binding at the classical binding site of EF-Tu (site I) also appears not to be affected by the methylation of the protein, tRNA binding at site II is. Although the apparent affinity of tRNA for site II remains unaltered upon methylation of EF-Tu, the conformational effects of tRNA binding at this site become different. Both the GTPase activity of the protein and the reactivity of Cys-81 are significantly less stimulated by the tRNA when EF-Tu is methylated. A possible physiological implication of this phenomenon is discussed.  相似文献   

2.
Protein arginine methyltransferases (PRMTs) are a family of mammalian enzymes catalyzing the symmetric dimethylation (Type I), asymmetric dimethylation (Type II), or monomethylation (Type III) of arginine residues within proteins. This family is composed of 11 isozymes, however the vast majority of asymmetric and symmetric dimethylation in mammals is completed by either PRMT1 or PRMT5, respectively. In recent years, a number of chemical probes targeting this family of enzymes have been developed, but the majority of these probes lack isozyme specificity. Herein, we report the development of a chemical probe, based on a non-natural peptide sequence, which specifically labels PRMT1 over PRMT5 with high selectivity and sensitivity.  相似文献   

3.
Post-translational modification (PTM) of RNA binding proteins (RBPs) play a very important role in determining their binding to cognate RNAs and therefore regulate the downstream effects. Lysine can undergo various PTMs and thereby contribute to the regulation of different cellular processes. It can be reversibly acetylated and methylated using a pool of respective enzymes, to act as a switch for controlling the binding efficiency of RBPs. Here we have delineated the thermodynamic and kinetic effects of N-acetylation and N-monomethylation of lysine on interaction between HIV-1 TAR RNA and its cognate binder Tat peptide ( a model system). Our results indicate that acetylation of lysine 50 (K50), leads to eight- fold reduction in binding affinity, originating exclusively from entropy changes whereas, lysine 51 (K51) acetylation resulted only in three fold decrease with large enthalpy-entropy compensation. The measurement of kinetic parameters indicated major change (4.5 fold) in dissociation rate in case of K50 acetylation however, K51 acetylation showed similar effect on both association and dissociation rates. In contrast, lysine methylation did not affect the binding affinity of Tat peptide to TAR RNA at K50, nonetheless three fold enhancement in binding affinity was observed at K51 position. In spite of large enthalpy-entropy compensation, lysine methylation seems to have more pronounced position specific effect on the kinetic parameters. In case of K50 methylation, simultaneous increase was observed in the rate of association and dissociation leaving binding affinity unaffected. The increased binding affinity for methylated Tat at K51 stems from faster association rate with slightly slower dissociation rate.  相似文献   

4.
Asymmetric dimethylation of arginine side chains is a common post-translational modification of eukaryotic proteins, which serves mostly to regulate protein-protein interactions. The modification is catalyzed by type I protein arginine methyltransferases, PRMT1 being the predominant member of the family. Determinants of substrate specificity of these enzymes are poorly understood. The Nuclear poly(A) binding protein 1 (PABPN1) is methylated by PRMT1 at 13 arginine residues located in RXR sequences in the protein's C-terminal domain. We have identified a preferred site for PRMT1-catalyzed methylation in PABPN1 and in a corresponding synthetic peptide. Variants of these substrates were analyzed by steady-state kinetic analysis and mass spectrometry. The data indicate that initial methylation is directed toward the preferred arginine residue by an N-terminally adjacent proline. Enhanced methylation upon peptide cyclization suggests that induction of a reverse turn structure is the basis for the ability of the respective proline residue to enable preferred methylation of the neighboring arginine residue, and this notion is supported by far-UV circular dichroism spectroscopy. We suggest that the formation of a reverse turn facilitates the access of arginine side chains to the active sites of PRMT1, which are located in the central cavity of a doughnut-shaped PRMT1 homodimer.  相似文献   

5.
6.
Feng Y  Xie N  Jin M  Stahley MR  Stivers JT  Zheng YG 《Biochemistry》2011,50(32):7033-7044
Post-translational modifications (PTMs) are important strategies used by eukaryotic organisms to modulate their phenotypes. One of the well-studied PTMs, arginine methylation, is catalyzed by protein arginine methyltransferases (PRMTs) with SAM as the methyl donor. The functions of PRMTs have been broadly studied in different biological processes and diseased states, but the molecular basis for arginine methylation is not well-defined. In this study, we report the transient-state kinetic analysis of PRMT1 catalysis. The fast association and dissociation rates suggest that PRMT1 catalysis of histone H4 methylation follows a rapid equilibrium sequential kinetic mechanism. The data give direct evidence that the chemistry of methyl transfer is the major rate-limiting step and that binding of the cofactor SAM or SAH affects the association and dissociation of H4 with PRMT1. Importantly, from the stopped-flow fluorescence measurements, we have identified a critical kinetic step suggesting a precatalytic conformational transition induced by substrate binding. These results provide new insights into the mechanism of arginine methylation and the rational design of PRMT inhibitors.  相似文献   

7.
《Proteomics》2017,17(19)
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and other proteins. MBP is subjected to extensive posttranslational modifications (PTMs) that are known to be crucial for the regulation of these interactions. Here, we report capillary electrophoresis–mass spectrometric (CE–MS) analysis for the separation and identification of MBP peptides that incorporate the same PTM at different sites, creating multiple localization variants, and the ability to analyze challenging modifications such as asparagine and glutamine deamidation, isomerization, and arginine citrullination. Moreover, we observed site‐specific alterations in the modification level of MBP purified from brain of mice of different age. In total, we identified 40 modifications at 33 different sites, which include both previously reported and seven novel modifications. The identified modifications include Nα‐terminal acetylation, mono‐ and dimethylation, phosphorylation, oxidation, deamidation, and citrullination. Notably, some new sites of arginine methylation overlap with the sites of citrullination. Our results highlight the need for sensitive and efficient techniques for a comprehensive analysis of PTMs.  相似文献   

8.
When S-adenosly[methyl-14-C]methionine and various species of transfer RNA are used as substrates for wheat embryo methyltransferases, the principal site of guanylate-N-2 methylation can be shown to be a G-residue between the stems of the dihydrouridine and anticodon loops. This common site of guanylate-N-2 methylation is referred to as the interstem target site. 2. When the interstem target site is the non-terminal G-residue in a G-C-G-C sequence, as in the cases of Escherichia coli tRNA1-Leu, tRNA-Ile, and tRNA3-Ser, there is preponderant dimethylation to yield N-2-dimethylguanylate. 3. When the interstem target site is part of a U-C-G-U sequence, as in the case of E. coli tRNAf-Met, there is diminished dimethylation and correspondingly increased monomethylation to yield N-2-monomethylguanylate. 4. When the interstem target site is the non-terminal G-residue in an A-U-G-G sequence, as in the case of yeast tRNA-Asp, there is negligible dimethylation and almost exclusive monomethylation to yield N-2-monomethylguanylate. 5. The concerted way in which the primary, secondary, and tertiary structures of tRNA molecules might influence the efficacy of these methylations is the subject of a brief discussion. Attention is also focused on the evolutionary and molecular basis for the generally non-random distributions of methylated oligonucleotide sequences in ribosomal and transfer ribonucleates.  相似文献   

9.
The SET8 histone lysine methyltransferase, which monomethylates the histone 4 lysine 20 residue plays important roles in cell cycle control and genomic stability. By employing peptide arrays we have shown that it has a long recognition sequence motif covering seven amino acid residues, viz. R17–H18–(R19KY)–K20–(V21ILFY)–(L22FY)–R23. Celluspots peptide array methylation studies confirmed specific monomethylation of H4K20 and revealed that the symmetric and asymmetric methylation on R17 of the H4 tail inhibits methylation on H4K20. Similarly, dimethylation of the R located at the −3 position also reduced methylation of p53 K382 which had been shown previously to be methylated by SET8. Based on the derived specificity profile, we identified 4 potential non-histone substrate proteins. After relaxing the specificity profile, we identified several more candidate substrates and showed efficient methylation of 20 novel non-histone peptides by SET8. However, apart from H4 and p53 none of the identified novel peptide targets was methylated at the protein level. Since H4 and p53 both contain the target lysine in an unstructured part of the protein, we conclude that the long recognition sequence of SET8 makes it difficult to methylate a lysine in a folded region of a protein, because amino acid side chains essential for recognition will be buried.  相似文献   

10.
11.
Rajakumara E  Wang Z  Ma H  Hu L  Chen H  Lin Y  Guo R  Wu F  Li H  Lan F  Shi YG  Xu Y  Patel DJ  Shi Y 《Molecular cell》2011,43(2):275-284
Histone methylation occurs on both lysine and arginine residues, and its dynamic regulation plays a critical role in chromatin biology. Here we identify the UHRF1 PHD finger (PHD(UHRF1)), an important regulator of DNA CpG methylation, as a histone H3 unmodified arginine 2 (H3R2) recognition modality. This conclusion is based on binding studies and cocrystal structures of PHD(UHRF1) bound to histone H3 peptides, where the guanidinium group of unmodified R2 forms an extensive intermolecular hydrogen bond network, with methylation of H3R2, but not H3K4 or H3K9, disrupting complex formation. We have identified direct target genes of UHRF1 from microarray and ChIP studies. Importantly, we show that UHRF1's ability to repress its direct target gene expression is dependent on PHD(UHRF1) binding to unmodified H3R2, thereby demonstrating the functional importance of this recognition event and supporting the potential for crosstalk between histone arginine methylation and UHRF1 function.  相似文献   

12.
Histone lysine methylation by histone lysine methyltransferases (HKMTs) has been implicated in regulation of gene expression. While significant progress has been made to understand the roles and mechanisms of animal HKMT functions, only a few plant HKMTs are functionally characterized. To unravel histone substrate specificity, degree of methylation and catalytic activity, we analyzed Arabidopsis Trithorax‐like protein (ATX), Su (var)3‐9 h omologs protein (SUVH), Su(var)3‐9 related protein (SUVR), ATXR5, ATXR6, and E(Z) HKMTs of Arabidopsis, maize and rice through sequence and structure comparison. We show that ATXs may exhibit methyltransferase specificity toward histone 3 lysine 4 (H3K4) and might catalyse the trimethylation. Our analyses also indicate that most SUVH proteins of Arabidopsis may bind histone H3 lysine 9 (H3K9). We also predict that SUVH7, SUVH8, SUVR1, SUVR3, ZmSET20 and ZmSET22 catalyse monomethylation or dimethylation of H3K9. Except for SDG728, which may trimethylate H3K9, all SUVH paralogs in rice may catalyse monomethylation or dimethylation. ZmSET11, ZmSET31, SDG713, SDG715, and SDG726 proteins are predicted to be catalytically inactive because of an incomplete S‐adenosylmethionine (SAM) binding pocket and a post‐SET domain. E(Z) homologs can trimethylate H3K27 substrate, which is similar to the Enhancer of Zeste homolog 2 of humans. Our comparative sequence analyses reveal that ATXR5 and ATXR6 lack motifs/domains required for protein‐protein interaction and polycomb repressive complex 2 complex formation. We propose that subtle variations of key residues at substrate or SAM binding pocket, around the catalytic pocket, or presence of pre‐SET and post‐SET domains in HKMTs of the aforementioned plant species lead to variations in class‐specific HKMT functions and further determine their substrate specificity, the degree of methylation and catalytic activity.  相似文献   

13.
Enthalpies of ligand binding to bovine neurophysins   总被引:1,自引:0,他引:1  
Flow microcalorimetry and batch microcalorimetry have been used to survey the energetics of ligand binding by bovine neurophysins I and II. Calorimetry studies were supplemented by van't Hoff analyses of binding constants determined by circular dichroism. Free energies of binding of a series of di- and tripeptides that bind to the strong hormone binding site of neurophysin were partitioned into their enthalpic and entropic components. The results indicate that, at 25 degrees C, the binding of most peptides is an enthalpy-driven reaction associated with negative entropy and heat capacity changes. Studies elsewhere, supported by evidence here, indicate that the principal component of the negative enthalpy change does not arise from the increase in neurophysin dimerization associated with peptide binding. Accordingly, the negative enthalpy change is attributed to direct bonding interactions with peptide and possibly also to peptide-induced changes in tertiary or quaternary organization. Comparison of the binding enthalpies of different peptides indicated two types of bonding interactions that contribute to the negative enthalpy change of peptide ligation. Substitution of an aromatic- or sulfur-containing side chain for an aliphatic side chain in position 1 of bound peptides led to increases in negative enthalpy of from 1 to 6 kcal/mol, demonstrating that interactions typically classified as hydrophobic can have a significant exothermic component at 25 degrees C. Similarly, loss of hydrogen bonding potential in the peptide decreased the enthalpy change upon binding, in keeping with the expected enthalpic contribution of hydrogen bonds. In particular, the data suggested that the peptide backbone between residues 2 and 3 and the phenolic hydroxyl group in position 2 participate in hydrogen bonding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
发育是由基因的特定时空表达模式来调控的,其表观遗传机制已越来越受到关注。组蛋白精氨酸甲基化是一种重要的翻译后修饰,由蛋白质精氨酸甲基化酶催化产生,对染色体的结构与功能具有重要调控作用。不同位点的精氨酸甲基化与其相邻位点的翻译后修饰具有复杂的对话机制,并可招募或阻碍相关效应分子的结合,进而导致转录激活或抑制。斑马鱼作为一种重要的发育生物学研究模式动物,已为蛋白质精氨酸甲基化酶在早期发育过程中的生理功能的研究提供了大量资料。该文对组蛋白精氨酸甲基化的产生、对话调控机制及其对斑马鱼早期发育调控功能的研究进行综述。  相似文献   

15.
16.
The mixed lineage leukemia protein-1 (MLL1) catalyzes histone H3 lysine 4 methylation and is regulated by interaction with WDR5 (WD-repeat protein-5), RbBP5 (retinoblastoma-binding protein-5), and the Ash2L (absent, small, homeotic discs-2-like) oncoprotein. In the accompanying investigation, we describe the identification of a conserved arginine containing motif, called the "Win" or WDR5 interaction motif, that is essential for the assembly and H3K4 dimethylation activity of the MLL1 core complex. Here we present a 1.7-A crystal structure of WDR5 bound to a peptide derived from the MLL1 Win motif. Our results show that Arg-3765 of MLL1 is bound in the same arginine binding pocket on WDR5 that was previously suggested to bind histone H3. Thermodynamic binding experiments show that the MLL1 Win peptide is preferentially recognized by WDR5. These results are consistent with a model in which WDR5 recognizes Arg-3765 of MLL1, which is essential for the assembly and enzymatic activity of the MLL1 core complex.  相似文献   

17.
Inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics in Streptomyces spp. comprises a family of diverse phenotypes in which characteristic subsets of the macrolide-lincosamide-streptogramin antibiotics induce resistance mediated by mono- or dimethylation of adenine, or both, in 23S ribosomal ribonucleic acid. In these studies, diverse patterns of induction specificity in Streptomyces and associated ribosomal ribonucleic acid changes are described. In Streptomyces fradiae NRRL 2702 erythromycin induced resistance to vernamycin B, whereas in Streptomyces hygroscopicus IFO 12995, the reverse was found: vernamycin B induced resistance to erythromycin. In a Streptomyces viridochromogenes (NRRL 2860) model system studied in detail, tylosin induced resistance to erythromycin associated with N6-monomethylation of 23S ribosomal ribonucleic acid, whereas in Staphylococcus aureus, erythromycin induced resistance to tylosin mediated by N6-dimethylation of adenine. Inducible macrolide-lincosamide-streptogramin resistance was found in S. fradiae NRRL 2702 and S. hygroscopicus IFO 12995, which synthesize the macrolides tylosin and maridomycin, respectively, as well as in the lincosamide producer Streptomyces lincolnensis NRRL 2936 and the streptogramin type B producer Streptomyces diastaticus NRRL 2560. A wide range of different macrolides including chalcomycin, tylosin, and cirramycin induced resistance when tested in an appropriate system. Lincomycin was active as inducer in S. lincolnensis, the organism by which it is produced, and streptogramin type B antibiotics induced resistance in S. fradiae, S. hygroscopicus, and the streptogramin type B producer S. diastaticus. Patterns of adenine methylation found included (i) lincomycin-induced monomethylation in S. lincolnensis (and constitutive monomethylation in a mutant selected with maridomycin), (ii) concurrent equimolar levels of adenine mono- plus dimethylation in S. hygroscopicus, (iii) monomethylation in S. fradiae (and dimethylation in a mutant selected with erythromycin), and (iv) adenine dimethylation in S. diastaticus induced by ostreogrycin B.  相似文献   

18.
19.
Arginine residues in RG-rich proteins are frequently dimethylated posttranslationally by protein arginine methyltransferases (PRMTs). The most common methylation pattern is asymmetrical dimethylation, a modification important for protein shuttling and signal transduction. Symmetrically dimethylated arginines (sDMA) have until now been confined to the myelin basic protein MBP and the Sm proteins D1 and D3. We show here by mass spectrometry and protein sequencing that also the human Sm protein B/B' and, for the first time, one of the Sm-like proteins, LSm4, contain sDMA in vivo. The symmetrical dimethylation of B/B', LSm4, D1, and D3 decisively influences their binding to the Tudor domain of the "survival of motor neurons" protein (SMN): inhibition of dimethylation by S-adenosylhomocysteine (SAH) abolished the binding of D1, D3, B/B', and LSm4 to this domain. A synthetic peptide containing nine sDMA-glycine dipeptides, but not asymmetrically modified or nonmodified peptides, specifically inhibited the interaction of D1, D3, B/B', LSm4, and UsnRNPs with SMN-Tudor. Recombinant D1 and a synthetic peptide could be methylated in vitro by both HeLa cytosolic S100 extract and nuclear extract; however, only the cytosolic extract produced symmetrical dimethylarginines. Thus, the Sm-modifying PRMT is cytoplasmic, and symmetrical dimethylation of B/B', D1, and D3 is a prerequisite for the SMN-dependent cytoplasmic core-UsnRNP assembly. Our demonstration of sDMAs in LSm4 suggests additional functions of sDMAs in tri-UsnRNP biogenesis and mRNA decay. Our findings also have interesting implications for the understanding of the aetiology of spinal muscular atrophy (SMA).  相似文献   

20.
We report structural alterations of histone H3 proteins induced by lysine‐4 (K4) monomethylation, dimethylation, and trimethylation identified by using synchrotron radiation circular dichroism spectroscopy. Compared with unmethylated H3, monomethylation and dimethylation induced increases in α‐helix structures and decreases in β‐strand structures. In contrast, trimethylation decreased α‐helix content but increased β‐strand content. The structural differences among K4‐unmethylated/methylated H3 may allow epigenetic enzymes to discriminate the substrates both chemically and sterically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号