首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Isolation and characterization of a Bombyx vasa-like gene   总被引:4,自引:0,他引:4  
  相似文献   

3.
Vasa is a highly conserved ATP-dependent RNA helicase expressed mainly in germ cells. The vasa gene plays a crucial role in the development of germ cell lineage and has become an excellent molecular marker in identifying germ cells in teleosts. However, little is known about the structure and function of the vasa gene in flatfish. In this study, the vasa gene (Csvasa) was isolated and characterized in half-smooth tongue sole (Cynoglossus semilaevis), an economically important flatfish in China. In the obtained 6425-bp genomic sequence, 23 exons and 22 introns were identified. The Csvasa gene encodes a 663-amino acid protein, including highly conserved domains of the DEAD-box protein family. The amino acid sequence also shared a high homology with other teleosts. Csvasa expression was mainly restricted to the gonads, with little or no expression in other tissues. Real-time quantitative polymerase chain reaction analysis revealed that Csvasa expression levels decreased during embryonic and early developmental stages and increased with the primordial germ cell proliferation. A typical sexually dimorphic expression pattern of Csvasa was observed during early development and sex differentiation, suggesting that the Csvasa gene might play a differential role in the proliferation and differentiation of male and female primordial germ cells (PGCs). Csvasa mRNA expression levels in neomales were significantly lower than those in normal males and females, indicating that the Csvasa gene might be implicated in germ cell development after sex reversal by temperature treatment. In addition, medaka (Oryzias latipes) PGCs could be transiently labeled by microinjection of synthesized mRNA containing the green fluorescence protein gene and 3′-untranslated region of Csvasa, which confirmed that the Csvasa gene has the potential to be used as a visual molecular marker of germ cells and laid a foundation for manipulation of PGCs in tongue sole reproduction.  相似文献   

4.
5.
Germ cells are a population of cells that do not differentiate to form somatic tissue but form the egg and sperm that ensure the reproduction of the organism. To understand how germ cells form, holds a key for identifying what sets them apart from all other cells of the organism. There are large differences between embryos regarding where and when germ cells form but the expression of Vasa protein is a common trait of germ cells. We studied the role of vasa during germ cell formation in the crustacean Parhyale hawaiensis. In a striking difference to the posterior specification of the group of germ cells in the arthropod model Drosophila, all germ cells in Parhyale originate from a single germ line progenitor cell of the 8-cell stage. We found vasa RNA ubiquitously distributed from 1-cell to 16-cell stage in Parhyale and localized to the germ cells from 32-cell stage onwards. Localization of vasa RNA to the germ cells is controlled by its 3′UTR and this could be mimicked by fluorescently labeled 3′UTR RNA. Vasa protein was first detectable at the 100-cell stage. MO-mediated inhibition of vasa translation caused germ cells to die after gastrulation. This means that in Parhyale Vasa protein is not required for the initial generation of the clone of germ cells but is required for their subsequent proliferation and maintenance. It also means that the role of vasa changed substantially during an evolutionary switch in the crustaceans by Parhyale from the specification of a group of germ cells to that of a single germ line progenitor. This is the first functional study of vasa in an arthropod beyond Drosophila.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
vasa is essential for germline development. However, the precise processes in which vasa involves vary considerably in diverse animal phyla. Here we show that vasa is required for primordial germ cell (PGC) migration in the medakafish. vasa knockdown by two morpholinos led to the PGC migration defect that was rescued by coinjection of vasa RNA. Interestingly, vasa knockdown did not alter the PGC number, identity, proliferation and motility even at ectopic locations. We established a cell culture system for tracing PGCs at the single cell level in vitro. In this culture system, control and morpholino-injected gastrulae produced the same PGC number and the same time course of PGC survival. Importantly, vasa-depleted PGCs in culture had similar motility and locomotion to normal PGCs. Expression patterns of wt1a, sdf1b and cxcr4b in migratory tissues remained unchanged by vasa knockdown. By chimera formation we show that PGCs from vasa-depleted blastulae failed to migrate properly in the normal environment, whereas control PGCs migrated normally in vasa-disrupted embryos. Furthermore, ectopic PGCs in vasa-depleted embryos also retained all the PGC properties examined. Taken together, medaka vasa is cell-autonomously required for PGC migration, but dispensable to PGC proliferation, motility, identity and survival.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号