首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The incorporation of unnatural amino acids site-specifically is a valuable technique for structure-function studies, incorporation of biophysical probes, and determining protein-protein interactions. THG73 is an amber suppressor tRNA used extensively for the incorporation of >100 different residues in over 20 proteins, but under certain conditions THG73 is aminoacylated in vivo by endogenous aminoacyl-tRNA synthetase. Similar aminoacylation is seen with the Escherichia coli Asn amber suppressor tRNA, which has also been used to incorporate UAAs in many studies. We now find that the natural amino acid placed on THG73 is Gln. Since the E. coli GlnRS recognizes positions in the acceptor stem, we made several acceptor stem mutations in the second to fourth positions on THG73. All mutations reduce aminoacylation in vivo and allow for the selection of highly orthogonal tRNAs. To show the generality of these mutations, we created opal suppressor tRNAs that show less aminoacylation in Xenopus oocytes relative to THG73. We have created a library of Tetrahymena thermophila Gln amber suppressor tRNAs that will be useful for determining optimal suppressor tRNAs for use in other eukaryotic cells.  相似文献   

3.
The hypothetical replicase or replicase subunit cistron in the 5'-proximal part of tobacco mosaic virus (TMV) RNA yields a major 126-K protein and a minor 183-K `readthrough' protein in vivo and in vitro. Two natural suppressor tRNAs were purified from uninfected tobacco plants on the basis of their ability to promote readthrough over the corresponding UAG termination codon in vitro. In a reticulocyte lysate the yield of 183-K readthrough protein increases from ˜10% in the absence of added tobacco plant tRNA up to ˜35% in the case of pure tRNATyr added. Their amino acid acceptance and anticodon sequence (GψA) identifies the two natural suppressor tRNAs as the two normal major cytoplasmic tyrosine-specific tRNAs. tRNATyr1 has an A:U pair at the base of the TψC stem and an unmodified G10, whereas tRNATyr2 contains a G:C pair in the corresponding location and m2G in position 10. This is the first case that, in a higher eukaryote, the complete structure is known of both the natural suppressor tRNAs and the corresponding viral RNA on which they exert their function. The corresponding codon-anticodon interaction, which is not in accordance with the wobble hypothesis, and the possible biological significance of the readthrough phenomenon is discussed.  相似文献   

4.
The transient expression of three novel plant amber suppressors derived from a cloned Nicotiana tRNASer(CGA), an Arabidopsis intron-containing tRNATyr(GTA) and an Arabidopsis intron-containing tRNAMet(CAT) gene, respectively, was studied in a homologous plant system that utilized the Agro bacterium-mediated gene transfer to Arabidopsis hypocotyl explants. This versatile system allows the detection of β-glucuronidase (GUS) activity by histochemical and enzymatic analyses. The activity of the suppressors was demonstrated by the ability to suppress a premature amber codon in a modified GUS gene. Co-transformation of Arabidopsis hypocotyls with the amber suppressor tRNASer gene and the GUS reporter gene resulted in ~10% of the GUS activity found in the same tissue transformed solely with the functional control GUS gene. Amber suppressor tRNAs derived from intron-containing tRNATyr or tRNAMet genes were functional in vivo only after some additional gene manipulations. The G3:C70 base pair in the acceptor stem of tRNAMet(CUA) had to be converted to a G3:U70 base pair, which is the major determinant for alanine tRNA identity. The inability of amber suppressor tRNATyr to show any activity in vivo predominantly results from a distorted intron secondary structure of the corresponding pre-tRNA that could be cured by a single nucleotide exchange in the intervening sequence. The improved amber suppressors tRNATyr and tRNAMet were subsequently employed for studying various aspects of the plant-specific mechanism of pre-tRNA splicing as well as for demonstrating the influence of intron-dependent base modifications on suppressor activity.  相似文献   

5.
Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies.  相似文献   

6.
Total tRNA of Chlamydomonas reinhardii was fractionated by 2-dimensional gel electrophoresis. Sixteen tRNAs specific for eleven amino acids could be identified by aminoacylation with Escherichia coli tRNA synthetases. Hybridization of these tRNAs with chloroplast restriction fragments allowed for the localization of the genes of tRNATyr, tRNAPro, tRNAPhe (2 genes), tRNAIle (2 genes) and tRNAHis (2 genes) on the chloroplast genome of C. reinhardii. The genes for tRNAAla (2 genes), tRNAAsn and tRNALeu were mapped by using individual chloroplast tRNAs from higher plants as probes.  相似文献   

7.
We have earlier characterized Saccharomyces cerevisiae strains with mutations of essential SUP45 and SUP35, which code for translation termination factors eRF1 and eRF3, respectively. In this work, the sup45 and sup35 nonsense mutants were compared with respect to the levels of eight tRNAs: tRNATyr, tRNAGln, tRNATrp, tRNALeu, tRNAArg (described as potential suppressor tRNAs), tRNAPro, tRNAHis, and tRNAGly. The mutants did not display a selective increase in tRNAs, capable of a noncanonical read-through at stop codons. Most of the mutations increased the level of all tRNAs under study. The mechanisms providing for the viability of the sup45 and sup35 nonsense mutants are discussed.  相似文献   

8.
In eubacterial and eukaryotic tRNAs specific for Asn, Asp, His and Tyr the modified deazaguanosinederivative queuosine occurs in position 34, the first position of the anticodon. Analysis of unfractionated tRNAs from wheat and from tobacco leaves shows that these tRNAs contain high amounts of guanosine (G) in place of queuosine (Q). This was measured by the exchange of G34 for [3H]guanine catalysed by the specific tRNA guanine transglycosylase from E. coli. Upon gel electrophoretic separation of the labeled tRNAs, seven Q-deficient tRNA species including isoacceptors are detectable. Two are identified as cytoplasmic tRNAsTyr and tRNAAsp and two represent chloroplast tRNATyr isoacceptors. In contrast to leaf cytoplasm and chloroplasts, wheat germ has low amounts of tRNAs with G34 in place of Q.A new enzymatic assay is described for quantitation of free queuine in cells and tissues. Analysis of queuine in plant tissues shows that wheat germ contains about 200 ng queuine per g wet weight. In wheat and tobacco leaves queuine is present, if at all, in amounts lower than 10 ng/g wet weight. The absence of Q in tRNAs from plant leaves is therefore caused by a deficiency of queuine. Tobacco cells cultivated in a synthetic medium without added queuine do not contain Q in tRNA, indicating that these rapidly growing cells do not synthesize queuine de novo.  相似文献   

9.
The anticodon sequence is a major recognition element for most aminoacyl-tRNA synthetases. We investigated the in vivo effects of changing the anticodon on the aminoacylation specificity in the example of E. coli tRNAPhe. Constructing different anticodon mutants of E. coli tRNAPhe by site-directed mutagenesis, we isolated 22 anticodon mutant tRNAPhe; the anticodons corresponded to 16 amino acids and an opal stop codon. To examine whether the mutant tRNAs had changed their amino acid acceptor specificity in vivo, we tested the viability of E. coli strains containing these tRNAPhe genes in a medium which permitted tRNA induction. Fourteen mutant tRNA genes did not affect host viability. However, eight mutant tRNA genes were toxic to the host and prevented growth, presumably because the anticodon mutants led to translational errors. Many mutant tRNAs which did not affect host viability were not aminoacylated in vivo. Three mutant tRNAs containing anticodon sequences corresponding to lysine (UUU), methionine (CAU) and threonine (UGU) were charged with the amino acid corresponding to their anticodon, but not with phenylalanine. These three tRNAs and tRNAPhe are located in the same cluster in a sequence similarity dendrogram of total E. coli tRNAs. The results support the idea that such tRNAs arising from in vivo evolution are derived by anticodon change from the same ancestor tRNA.  相似文献   

10.
The incorporation of unnatural amino acids into proteins is a valuable tool for addition of biophysical probes, bio-orthogonal functionalities, and photoreactive cross-linking agents, although these approaches often require quantities of protein that are difficult to access with chemically aminoacylated tRNAs. THG73 is an amber suppressor tRNA that has been used extensively, incorporating over 100 residues in 20 proteins. In vitro studies have shown that the Escherichia coli Asn amber suppressor (ENAS) suppresses better than THG73. However, we report here that ENAS suppresses with <26% of the efficiency of THG73 in Xenopus oocytes. We then tested the newly developed Tetrahymena thermophila Gln amber suppressor (TQAS) tRNA library, which contains mutations in the second to fourth positions of the acceptor stem. The acceptor stem mutations have no adverse effect on suppression efficiency and, in fact, can increase the suppression efficiency. Combining mutations causes an averaging of suppression efficiency, and increased suppression efficiency does not correlate with increased DeltaG of the acceptor stem. We created a T. thermophila opal suppressor, TQOpS', which shows approximately 50% suppression efficiency relative to THG73. The TQAS tRNA library, composed of functional suppressor tRNAs, has been created and will allow for screening in eukaryotic cells, where rapid analysis of large libraries is not feasible.  相似文献   

11.
We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells.  相似文献   

12.
13.
The addition of novel amino acids to the genetic code of Escherichia coli involves the generation of an aminoacyl-tRNA synthetase and tRNA pair that is ‘orthogonal’, meaning that it functions independently of the synthetases and tRNAs endogenous to E.coli. The amino acid specificity of the orthogonal synthetase is then modified to charge the corresponding orthogonal tRNA with an unnatural amino acid that is subsequently incorporated into a polypeptide in response to a nonsense or missense codon. Here we report the development of an orthogonal glutamic acid synthetase and tRNA pair. The tRNA is derived from the consensus sequence obtained from a multiple sequence alignment of archaeal tRNAGlu sequences. The glutamyl-tRNA synthetase is from the achaebacterium Pyrococcus horikoshii. The new orthogonal pair suppresses amber nonsense codons with an efficiency roughly comparable to that of the orthogonal tyrosine pair derived from Methanococcus jannaschii, which has been used to selectively incorporate a variety of unnatural amino acids into proteins in E.coli. Development of the glutamic acid orthogonal pair increases the potential diversity of unnatural amino acid structures that may be incorporated into proteins in E.coli.  相似文献   

14.
Non-natural amino acids have been genetically encoded in living cells, using aminoacyl-tRNA synthetase–tRNA pairs orthogonal to the host translation system. In the present study, we engineered Escherichia coli cells with a translation system orthogonal to the E. coli tyrosyl-tRNA synthetase (TyrRS)–tRNATyr pair, to use E. coli TyrRS variants for non-natural amino acids in the cells without interfering with tyrosine incorporation. We showed that the E. coli TyrRS–tRNATyr pair can be functionally replaced by the Methanocaldococcus jannaschii and Saccharomyces cerevisiae tyrosine pairs, which do not cross-react with E. coli TyrRS or tRNATyr. The endogenous TyrRS and tRNATyr genes were then removed from the chromosome of the E. coli cells expressing the archaeal TyrRS–tRNATyr pair. In this engineered strain, 3-iodo-l-tyrosine and 3-azido-l-tyrosine were each successfully encoded with the amber codon, using the E. coli amber suppressor tRNATyr and a TyrRS variant, which was previously developed for 3-iodo-l-tyrosine and was also found to recognize 3-azido-l-tyrosine. The structural basis for the 3-azido-l-tyrosine recognition was revealed by X-ray crystallography. The present engineering allows E. coli TyrRS variants for non-natural amino acids to be developed in E. coli, for use in both eukaryotic and bacterial cells for genetic code expansion.  相似文献   

15.
A nuclear tRNALys gene from Arabidopsis thaliana was cloned and mutated so as to express tRNAs with altered anticodons which bind to a UAG nonsense (amber) codon and to the Arg (AGG), Asn (AAC,AAT), Gln (CAG) or Glu (GAG) codons. Concomitantly, a codon in the firefly luciferase gene for a functionally important Lys was altered to an amber codon, or to Arg, Asn, Gln, Glu, Thr and Trp codons, so as to construct reporter genes reliant upon incorporation of Lys. The altered tRNALys and luciferase genes were introduced into Nicotiana benthamiana protoplasts and expression of the mutated tRNAs was verified by translational suppression of the mutant firefly luciferase genes. Expression of the amber suppressor tRNA CUA Lys from non-replicative vectors promoted 10–40% suppression of the luciferase nonsense reporters while expression of the amber and missense tRNALys suppressor genes from a geminivirus vector capable of replication promoted 30–80% suppression of the luciferase nonsense reporter and up to 10% suppression of the luciferase missense reporters with Arg, Asn, Gln and Glu codons.  相似文献   

16.
17.
The abundance of tRNAs, together with their central role in translation, has generated considerable interest in the use of tRNA genes for biotechnological applications. One such application is the use of suppressor tRNAs to transactivate target genes containing premature stop codons. Previous work has shown that such systems can work in transient expression experiments in plant protoplasts; here these experiments are extended to show that suppression of stop codons can occur in whole plants. Transgenic tobacco plants homozygous for a modified tRNALeu gene expressing a strong amber suppressor tRNA, and plants carrying a β-glucuronidase (gus) gene inactivated by a premature amber stop codon have been obtained. When the two types of plants are crossed, many of the F1 hybrids show significant GUS activity. The GUS activity is dependent on the presence of both the suppressor tRNA gene and the gus gene. Tobacco plants carrying the suppressor tRNA gene are phenotypically normal, fertile and the gene shows normal Mendelian inheritance. The potential applications of such a system are discussed.  相似文献   

18.
Chloroplasts are semiautonomous organelles found in photosynthetic plants. The major functions of chloroplasts include photosynthesis and carbon fixation, which are mainly regulated by its circular genomes. In the highly conserved chloroplast genome, the chloroplast transfer RNA genes (cp tRNA) play important roles in protein translation within chloroplasts. However, the evolution of cp tRNAs remains unclear. Thus, in the present study, we investigated the evolutionary characteristics of chloroplast tRNAs in five Adoxaceae species using 185 tRNA gene sequences. In total, 37 tRNAs encoding 28 anticodons are found in the chloroplast genome in Adoxaceae species. Some consensus sequences are found within the Ψ‐stem and anticodon loop of the tRNAs. Some putative novel structures were also identified, including a new stem located in the variable region of tRNATyr in a similar manner to the anticodon stem. Furthermore, phylogenetic and evolutionary analyses indicated that synonymous tRNAs may have evolved from multiple ancestors and frequent tRNA duplications during the evolutionary process may have been primarily caused by positive selection and adaptive evolution. The transition and transversion rates are uneven among different tRNA isotypes. For all tRNAs, the transition rate is greater with a transition/transversion bias of 3.13. Phylogenetic analysis of cp tRNA suggested that the type I introns in different taxa (including eukaryote organisms and cyanobacteria) share the conserved sequences “U‐U‐x2‐C” and “U‐x‐G‐x2‐T,” thereby indicating the diverse cyanobacterial origins of organelles. This detailed study of cp tRNAs in Adoxaceae may facilitate further investigations of the evolution, phylogeny, structure, and related functions of chloroplast tRNAs.  相似文献   

19.
Previous studies had shown that two principle forms of tyrosine transfer RNA of Drosophila melanogaster were present in wild-type adult flies but that the second form was virtually absent in a suppressor mutant, su(s)2. Current results are at variance with the previous ones, in that the suppressor mutant has significant amounts of the second form of tRNATyr. A second chromatography system for separating these forms of tRNATyr is described, RPC-5, and is compared to the system used previously, RPC-2. Both systems indicate that wild-type flies contain the two forms of tRNATyr in a ratio of 4060, the suppressor mutant in a ratio of 6040. The difference between current and previous results can be attributed to the procedures used in the preparation of the enzyme that is used as a source of tyrosyl-tRNA ligase. The enzyme activity can be separated into two fractions on DEAE-cellulose chromatography. With suppressor tRNA as substrate, one enzyme fraction charges both forms of tRNATyr but the second enzyme fraction charges the first form preferentially or nearly exclusively in some cases, as was seen in the previous experiments. With wild-type tRNA as substrate both enzyme fractions charge both forms of tRNATyr. Storage results in the loss of the enzyme's ability to discriminate against the second form of tRNATyr from the suppressor mutant, while the enzymatic activity is retained. We postulate that the su(s)+ locus produces an enzyme that modifies the second isoacceptor of tRNATyr and that, when such modification fails to occur (as in the su(s)2 mutant), the tRNA is unable to accept tyrosine from one form of tyrosyl-tRNA ligase. How the discrimination against the second isoacceptor by the ligase may be important metabolically is not apparent.  相似文献   

20.
We have constructed a model of the complex between tyrosyl-tRNA synthetase (TyrRS) from Bacillus stearothermophilus and tRNATyr by successive cycles of predictions, mutagenesis of TyrRS and molecular modeling. We confront this model with data obtained independently, compare it to the crystal structures of other complexes and review recent data on the discrimination between tRNAs by TyrRS. Comparison of the crystal structures of TyrRs and GlnRS, both of which are class I synthetases, and comparison of the identity elements of tRNATyr and tRNAGln indicate that the two synthetases bind their cognate tRNAs differently. The mutagenesis data on tRNATyr confirm the model of the TyrRS:tRNATyr complex on the following points. TyrRS approaches tRNATyr on the side of the variable loop. The bases of the first three pairs of the acceptor stem are not recognized. The presence of the NH2 group in position C6 and the absence of a bulky group in position C2 are important for the recognition of the discriminator base A73 by TyrRS, which is fully realized only in the transition state for the acyl transfer. The anticodon is the major identity element of tRNATyr. We have set up an in vivo approach to study the effects of synthetase mutations on the discrimination between tRNAs. Using this approach, we have shown that residue Glul52 of TyrRS acts as a purely negative discriminant towards non-cognate tRNAs, by electrostatic and steric repulsions. The overproductions of the wild type TyrRSs from E coli and B stearothermophilus are toxic to E coli, due to the mischarging or the non-productive binding of tRNAs. The construction of a family of hybrids between the TyrRSs from E coli and B stearothermophilus has shown that their sequences and structures have remained locally compatible through evolution, for holding and function, in particular for the specific recognition and charging of tRNATyr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号