首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
目的:探讨尿液外泌小体(exosomes)中微小RNA(miRNA,miR)的变化与肾纤维化的关系,以寻找早期诊断肾纤维化的生物标志物。方法:以行肾穿刺活检术并诊断为原发性肾脏病的患者为研究对象,其中,肾活检未发现肾纤维化的患者作为对照组,而存在轻到中度肾纤维化的患者作为纤维化组。收集20 m L晨尿,用超速离心方法分离尿液exosomes,用电镜观察其形态,用定量PCR方法检测其中miRNA的含量,并分析其与肾纤维化的关系。结果:超速离心获得的尿液沉淀物呈现exosomes的形态学特征。miR-21、miR-29b、miR-29c、miR-30e、miR-192、miR-200a、miR-200c和miR-429可在所有患者的尿液exosomes中被检出,但含量存在较大差异。与对照组相比,纤维化组患者尿液exosomes中,miR-21、miR-29b、miR-30e和miR-200c的含量显著增高,miR-29c的含量显著下降,而miR-192、miR-200a和miR-429的含量无显著变化。尿液exosomes中miRNA含量与纤维化肾组织中miRNA表达量的变化并不完全一致。结论:尿液exosomes中miR-29c和miR-21的含量在肾纤维化的病变中发生显著改变,可能成为早期诊断肾纤维化的生物标志物。  相似文献   

2.
3.
Li WQ  Chen C  Xu MD  Guo J  Li YM  Xia QM  Liu HM  He J  Yu HY  Zhu L 《The FEBS journal》2011,278(9):1522-1532
The mechanisms whereby hepatic fibrosis develops in chronic liver diseases remain incompletely defined. Here, we sought to examine whether microRNA (miRNA) became dysregulated in dimethylnitrosamine-induced hepatic fibrosis in rats. Our microarray analysis revealed that the miR-34 family was upregulated along with other miRNAs in liver fibrotic tissues. Six miRNAs, such as rno-miR-878, were downregulated. The findings were confirmed by RT-PCR assays. Gene ontology analysis further showed that many of these dysregulated miRNAs were involved in lipid/fatty acid metabolism. The acyl-CoA synthetase long-chain family member 1 (ACSL1) gene contained specific binding sites for miR-34a/miR-34c. Additional enhanced green fluorescence protein reporter activity assays indicated that the miR-34 family targeted ACSL1. Our RT-PCR and immunoblotting assays further demonstrated that both the mRNA and protein levels of ACSL1 were markedly reduced in fibrotic liver tissues. Our findings suggest that miRNA becomes dysregulated during hepatic fibrosis, and that the miR-34 family may be involved in the process by targeting ACSL1.  相似文献   

4.
5.
Cardiac fibrosis is associated with diverse heart diseases. In response to different pathological irritants, cardiac fibroblasts may be induced to proliferate and differentiate into cardiac myofibroblasts, thus contributing to cardiac fibrosis. TGF-β signaling is implicated in the development of heart failure through the induction of cardiac fibrosis. C-Ski, an inhibitory regulator of TGF-β signaling, has been reported to suppress TGF-β1-induced human cardiac fibroblasts' proliferation and ECM protein increase; however, the underlying molecular mechanism needs further investigation. In the present study, we demonstrated that c-Ski could ameliorate isoproterenol (ISO)-induced rat myocardial fibrosis model and TGF-β1-induced primary rat cardiac fibroblasts' proliferation, as well as extracellular matrix (ECM) deposition. The protein level of c-Ski was dramatically decreased in cardiac fibrosis and TGF-β1-stimulated primary rat cardiac fibroblasts. In recent decades, a family of small non-coding RNA, namely miRNAs, has been reported to regulate gene expression by interacting with diverse mRNAs and inducing either translational suppression or mRNA degradation. Herein, we selected miR-34a and miR-93 as candidate miRNAs that might target to regulate c-Ski expression. After confirming that miR-34a/miR-93 targeted c-Ski to inhibit its expression, we also revealed that miR-34a/miR-93 affected TGF-β1-induced fibroblasts' proliferation and ECM deposition through c-Ski. Taken together, we demonstrated a miR-34a/miR-93-c-Ski axis which modulates TGF-β1- and ISO-induced cardiac fibrosis in vitro and in vivo; targeting the inhibitory factors of c-Ski to rescue its expression may be a promising strategy for the treatment of cardiac fibrosis.  相似文献   

6.
Members of the miR-200 family of micro RNAs (miRNAs) have been shown to inhibit epithelial-mesenchymal transition (EMT). EMT of tubular epithelial cells is the mechanism by which renal fibroblasts are generated. Here we show that miR-200 family members inhibit transforming growth factor-beta (TGF-beta)-induced EMT of tubular cells. Unilateral ureter obstruction (UUO) is a common model of EMT of tubular cells and subsequent tubulointerstitial fibrosis. In order to examine the role of miR-200 family members in tubulointerstitial fibrosis, their expression was investigated in the kidneys of UUO mice. The expression of miR-200 family miRNAs was increased in a time-dependent manner, with induction of miR-200b most pronounced. To clarify the effect of miR-200b on tubulointerstitial fibrosis, we injected miR-200b precursor intravenously. A single injection of 0.5 nM miR-200b precursor was sufficient to inhibit the increase of collagen types I, III and fibronectin in obstructed kidneys, and amelioration of fibrosis was confirmed by observation of the kidneys with Azan staining. miR-200 family members have been previously shown to inhibit EMT by reducing the expression of ZEB-1 and ZEB-2 which are known repressors of E-cadherin. We demonstrated that expression of ZEB-1 and ZEB-2 was increased after ureter obstruction and that administration of the miR-200b precursor reversed this effect. In summary, these results indicate that miR-200 family is up-regulated after ureter obstruction, miR-200b being strongly induced, and that miR-200b ameliorates tubulointerstitial fibrosis in obstructed kidneys. We suggest that members of the miR-200 family, and miR-200b specifically, might constitute novel therapeutic targets in kidney disease.  相似文献   

7.
近年来研究发现微RNA(microRNA,miRNA)与机体人部分生理、病理过程均有密切关系,如:组织的发育和分化、组织再生、病毒防御以及细胞增殖与凋亡等。miRNA在特发性肺纤维化(IPF)中的作用也日渐为研究者所重视,在IPF中有些miRNA上调(如miR-155、miR-21),有些下调(如let-7、miR-29、miR-200)。这一发现为寻找IPF治疗方法提供了一个新的突破口。本文对近年来miRNA在IPF中作用的研究进展进行了综述,并对miRNA-21、let-7d、miRNA-155、miRNA-29以及miRNA-200在肺纤维化中的作用分别进行了阐述,为研究miRNA征IPF中的作用及机制提供一定参考。  相似文献   

8.
Elastin production is characteristically turned off during the maturation of elastin-rich organs such as the aorta. MicroRNAs (miRNAs) are small regulatory RNAs that down-regulate target mRNAs by binding to miRNA regulatory elements (MREs) typically located in the 3' UTR. Here we show a striking up-regulation of miR-29 and miR-15 family miRNAs during murine aortic development with commensurate down-regulation of targets including elastin and other extracellular matrix (ECM) genes. There were a total of 14 MREs for miR-29 in the coding sequences (CDS) and 3' UTR of elastin, which was highly significant, and up to 22 miR-29 MREs were found in the CDS of multiple ECM genes including several collagens. This overrepresentation was conserved throughout mammalian evolution. Luciferase reporter assays showed synergistic effects of miR-29 and miR-15 family miRNAs on 3' UTR and coding-sequence elastin constructs. Our results demonstrate that multiple miR-29 and miR-15 family MREs are characteristic for some ECM genes and suggest that miR-29 and miR-15 family miRNAs are involved in the down-regulation of elastin in the adult aorta.  相似文献   

9.
Abstract

miRNAs are endogenous non-coding RNAs that are ~22 nucleotides in length and can have structural, enzymatic and regulatory functions. miRNAs play important roles in the progression of renal fibrosis. miR-21, through a feed-forward loop and a downstream mediator of transforming growth factor-β (TGF-β), amplifies TGF-β signaling and promotes fibrosis. miR-21 is high on the list of non-coding, small, regulatory RNAs that promote renal fibrosis and emerges as a serum biomarker for kidney diseases, but many questions await answers. This review was performed to sum up the role of miR-21 and its signaling pathways in renal diseases.  相似文献   

10.
MicroRNAs (miRNAs), a class of short non-coding RNAs that regulate the expression of mRNA targets, are important regulators of cellular senescence and aging. We questioned which miRNAs are involved in age-related degeneration of the organ of Corti (OC), the auditory sensory epithelium that transduces mechanical stimuli to electrical activity in the inner ear. Degeneration of the OC is generally accepted as the main cause of age-related hearing loss (ARHL), a progressive loss of hearing in individuals as they grow older. To determine which miRNAs are involved in the onset and progression of ARHL, miRNA gene expression in the OC of two mouse strains, C57BL/6J and CBA/J, was compared at three different ages using GeneChip miRNA microarray and was validated by real-time PCR. We showed that 111 and 71 miRNAs exhibited differential expression in the C57 and CBA mice, respectively, and that downregulated miRNAs substantially outnumbered upregulated miRNAs during aging. miRNAs that had approximately 2-fold upregulation included members of miR-29 family and miR-34 family, which are known regulators of pro-apoptotic pathways. In contrast, miRNAs that were downregulated by about 2-fold were members of the miR-181 family and miR-183 family, which are known to be important for proliferation and differentiation, respectively. The shift of miRNA expression favoring apoptosis occurred earlier than detectable hearing threshold elevation and hair cell loss. Our study suggests that changes in miRNA expression precede morphological and functional changes, and that upregulation of pro-apoptotic miRNAs and downregulation of miRNAs promoting proliferation and differentiation are both involved in age-related degeneration of the OC.  相似文献   

11.
12.
The miRNA-29 family of microRNAs (miRNAs), including miR-29a, miR-29b and miR-29c, was recently reported to be aberrantly expressed in multiple cancers. Increasing evidence shows that the abnormal expression of miR-29 family is associated with tumorigenesis and cancer progression, making miR-29s a well-analyzed group of miRNAs in cancer research. Here, in this review we aim to provide an overview of the role of miR-29 family in the pathophysiologic changes of cancer cells and the epigenetic and immune regulation through the biological function of miR-29s.  相似文献   

13.
microRNAs regulate diverse biological processes such as development and aging by promoting degradation or inhibiting translation of their target mRNAs. In this study, we have found that the miR-58 family microRNAs regulate lifespan in C.elegans. Intriguingly, members of the miR-58 family affect lifespan differently, sometimes in opposite directions, and have complex genetic interactions. The abundances of the miR-58 family miRNAs are up-regulated in the long-lived daf-2 mutant in a daf-16-dependent manner, indicating that these miRNAs are effectors of insulin signaling in C. elegans. We also found that miR-58 is regulated by insulin signaling and partially required for the lifespan extension mediated by reduced insulin signaling,germline ablation, dietary restriction, and mild mitochondrial dysfunction. We further identified the daf-21, ins-1, and isw-1 mRNAs as endogenous targets of miR-58. Our study shows that miRNAs function in multiple lifespan extension mechanisms,and that the seed sequence is not the dominant factor defining the role of a miRNA in lifespan regulation.  相似文献   

14.
15.
《Cellular signalling》2014,26(7):1500-1505
Endogenous reactive oxygen species (ROS) control is important for the maintenance of self-renewal of embryonic stem (ES) cells. Although miRNAs have been found to be critically involved in the regulation of the self-renewal, whether miRNAs can regulate the signaling axis to control ROS in ES cells is unclear. Here we show that miR-29b specifically regulates the self-renewal of mouse ES cells in response to ROS generated by antioxidant-free culture. Sirt1 is the direct target of miR-29b and can also make mES cells sensitive to ROS and regulate the self-renewal of mES cells during the response of ROS. We further found that Sirt1 could attenuate the miR-29b function in regulating mES cells' self-renewal in response to ROS. Our results determined that miR-29b–Sirt1 axis regulates self-renewal of mES cells in response to ROS.  相似文献   

16.
17.
Diabetic nephropathy (DN) is one of the major microvascular diseases and most common in diabetic patient, finally results in kidney failure. The main features of DN are basement membrane thickening, microalbuminuria, proteinuria, glomerular, mesangial hypertrophy and ECM protein accumulation. Recent discoveries have been shown that numerous pathways are activated during the development of DN in Diabetes mellitus. The small non-coding miRNA plays an important role in regulating the pathway which is involved in DN. In our study we consolidate different pathways which regulated by miRNAs in molecular signaling which results in causing DN. We embedded entire pathway in the form of regulatory network and we could able to understand that some of the miRNAs like miR-29 family, miR-377 and miR-25 would be able to control DN.  相似文献   

18.
Accumulating evidence suggests that microRNAs (miRNAs) contribute to a myriad of kidney diseases. However, the regulatory role of miRNAs on the key molecules implicated in kidney fibrosis remains poorly understood. Bone morphogenetic protein-7 (BMP-7) and its related BMP-6 have recently emerged as key regulators of kidney fibrosis. Using the established unilateral ureteral obstruction (UUO) model of kidney fibrosis as our experimental model, we examined the regulatory role of miRNAs on BMP-7/6 signaling. By analyzing the potential miRNAs that target BMP-7/6 in silica, we identified miR-22 as a potent miRNA targeting BMP-7/6. We found that expression levels of BMP-7/6 were significantly elevated in the kidneys of the miR-22 null mouse. Importantly, mice with targeted deletion of miR-22 exhibited attenuated renal fibrosis in the UUO model. Consistent with these in vivo observations, primary renal fibroblast isolated from miR-22-deficient UUO mice demonstrated a significant increase in BMP-7/6 expression and their downstream targets. This phenotype could be rescued when cells were transfected with miR-22 mimics. Interestingly, we found that miR-22 and BMP-7/6 are in a regulatory feedback circuit, whereby not only miR-22 inhibits BMP-7/6, but miR-22 by itself is induced by BMP-7/6. Finally, we identified two BMP-responsive elements in the proximal region of miR-22 promoter. These findings identify miR-22 as a critical miRNA that contributes to renal fibrosis on the basis of its pivotal role on BMP signaling cascade.  相似文献   

19.
Glucocorticoids (GCs) are frequently used to treat many of the acute disease manifestations associated with inflammatory and autoimmune disorders. However, Toll-like receptor (TLR) pathway-activated plasmacytoid dendritic cells (pDCs) are resistant to GC-induced apoptosis, which leads to the inefficiency of GCs in the treatment of type I interferon-related autoimmune diseases, such as systemic lupus erythematosus (SLE). Therefore, compounds promoting pDC apoptosis may be helpful for improving the efficacy of GCs. In this study, we performed screening to identify microRNAs (miRNAs) involved in TLR-inhibited GC-induced pDC apoptosis and found an array of miRNAs that may regulate pDC apoptosis. Among those demonstrating altered expression, 6 miRNAs were inhibited in TLR-activated pDCs. Bioinformatics analysis and functional studies indicated that miR-29b and miR-29c were 2 key miRNAs involved in TLR-inhibited GC-induced pDC apoptosis. Furthermore, both of these miRNAs promoted pDC apoptosis by directly targeting Mcl-1 and Bcl-2 in human primary pDCs. Our findings provide new targets that could improve the efficacy of GCs for the treatment of SLE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号