首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β-catenin is a key mediator of the Wnt signaling process and accumulates in the nucleus and at the membrane in response to Wnt-mediated inhibition of GSK-3β. In this study we used live cell photobleaching experiments to determine the dynamics and rate of recruitment of β-catenin at membrane adherens junctions (cell adhesion) and membrane ruffles (cell migration). First, we confirmed the nuclear-cytoplasmic shuttling of GFP-tagged β-catenin, and found that a small mobile pool of β-catenin can move from the nucleus to membrane ruffles in NIH 3T3 fibroblasts with a t0.5 of ~ 30 s. Thus, β-catenin can shuttle between the nucleus and plasma membrane. The localized recruitment of β-catenin-GFP to membrane ruffles was more rapid, and the strong recovery observed after bleaching (mobile fraction 53%, t0.5 ~5 s) is indicative of high turnover and transient association. In contrast, β-catenin-GFP displayed poor recovery at adherens junctions in MDCK epithelial cells (mobile fraction 10%, t0.5 ~8 s), indicating stable retention at these membrane structures. We previously identified IQGAP1 as an upstream regulator of β-catenin at the membrane, and this is supported by photobleaching assays which now reveal IQGAP1 to be more stably anchored at membrane ruffles than β-catenin. Further analysis showed that LiCl-mediated inactivation of the kinase GSK-3β increased β-catenin membrane ruffle staining; this correlated with a faster rate of recruitment and not increased membrane retention of β-catenin. In summary, β-catenin displays a high turnover rate at membrane ruffles consistent with its dynamic internalization and recycling at these sites by macropinocytosis.  相似文献   

2.
AimsPrevious studies have shown that isorhamnetin has anti-adipogenic effects in mouse 3T3-L1 cells. This study was conducted to elucidate the inhibitory mechanisms of isorhamnetin during adipogenic differentiation of human adipose tissue-derived stem cells (hAMSCs).Main methodsThe effect of isorhamnetin on adipogenic differentiation of hAMSCs was quantified by Oil Red O staining and a triglyceride assay. In addition, real-time PCR and Western blot were used to determine the expression of adipogenesis-related genes.Key findingsIsorhamnetin inhibited the adipocyte differentiation of hAMSCs. Additionally, when the effects of Wnt antagonists that promote adipogenesis were evaluated, isorhamnetin was found to down-regulate the mRNA levels of sFRP1 and Dkk1, but had no effect on the mRNA levels of sFRP2, sFRP3, sFRP4 and Dkk3. Isorhamnetin also inhibited the expression of Wnt receptor and co-receptor genes. Furthermore, isorhamnetin increased the protein levels of β-catenin, an effector molecule of Wnt signaling, but had no effect on the mRNA levels of β-catenin. The phosphorylation level of GSK 3β was also increased by isorhamnetin. These results were confirmed by the fact that the expression of c-myc, cyclin D1 and PPARδ, which are target genes of β-catenin, was upregulated by isorhamnetin. Moreover, isorhamnetin reduced the mRNA expression levels of C/EBPα and PPARγ, which are known to be inhibited by c-myc or by cyclin D1 and PPARδ, respectively.SignificanceOur results indicate that isorhamnetin inhibits the adipogenic differentiation of hAMSCs and that its mechanisms are mediated by the stabilization of β-catenin.  相似文献   

3.
The adrenal gland plays a fundamental role in the response to a variety of stress situations. After a stress condition, adrenal medullary chromaffin cells release, by exocytosis, high quantities of catecholamine (epinephrine, EP; norepinephrine, NE), especially EP. Once in the blood stream, catecholamines reach different target organs, and induce their biological actions through the activation of different adrenoceptors. Adrenal gland cells may also be activated by catecholamines, through hormonal, paracrine and/or autocrine system. The presence of functional adrenoceptors on human adrenal medulla and their involvement on catecholamines secretion was not previously evaluated. In the present study we investigated the role of β(1)-, β(2)- and β(3)-adrenoceptors on catecholamine release from human adrenal chromaffin cells in culture. We observed that the β-adrenoceptor agonist (isoproterenol) and β(2)-adrenoceptor agonist (salbutamol) stimulated catecholamine (NE and EP) release from human adrenal chromaffin cells. Furthermore, the β(2)-adrenoceptor antagonist (ICI 118,551; 100 nM) and β(3)-adrenoceptor antagonist (SR 59230A; 100 nM) inhibited the catecholamine release stimulated by isoproterenol and nicotine in chromaffin cells. The β(1)-adrenoceptor antagonist (atenolol; 100 nM) did not change the isoproterenol- neither the nicotine-evoked catecholamine release from human adrenal chromaffin cells. Moreover, our results show that the protein kinase A (PKA), protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and phospholipase C (PLC) are intracellular mechanisms involved in the catecholamine release evoked by salbutamol. In conclusion, our data suggest that the activation of β(2)- and β(3)-adrenoceptors modulate the basal and evoked catecholamine release, NE and EP, via an autocrine positive feedback loop in human adrenal chromaffin cells.  相似文献   

4.
Barry FA  Graham GJ  Fry MJ  Gibbins JM 《FEBS letters》2003,553(1-2):173-178
In this study we show that both glycogen synthase kinase 3 (GSK3) isoforms, GSK3alpha and GSK3beta, are present in human platelets and are phosphorylated on Ser(21) and Ser(9), respectively, in platelets stimulated with collagen, convulxin and thrombin. Phosphorylation of GSK3alpha/beta was dependent on phosphoinositide 3-kinase (PI3K) activity and independent of platelet aggregation, and correlated with a decrease in GSK3 activity that was preserved by pre-incubating platelets with PI3K inhibitor LY294002. Three structurally distinct GSK3 inhibitors, lithium, SB415286 and TDZD-8, were found to inhibit platelet aggregation. This implicates GSK3 as a potential regulator of platelet function.  相似文献   

5.
6.
7.
8.
9.
In the present paper the influence of β2-glycoprotein-I, also known as apolipoprotein H, upon the prothrombinase activity of platelets and phospholipid vesicles was investigated. The results can be summarized as follows. 1. The prothrombinase activity of resting, non-activated platelets, lysed platelets and vesicles composed of phosphatidylserine and phosphatidylcholine at different molar ratios is inhibited by β2-glycoprotein-I in a dose-dependent manner. The concentration of glycoprotein which produces marked inhibition is within the physiological plasma concentration range of β2-glycoprotein-I. 2. The time dependence of this inhibition is a relatively slow process, which is not fully expressed before 1 h or incubation. 3. The effect of the glycoprotein is not due to a direct interaction with the components of the prothrombinase complex, i.e. factors Xa, Va, Ca2+ or prothrombin, nor is the inhibitory action abolished by increasing concentrations of coagulation factors Xa and Va. This suggests that β2-glycoprotein-I causes a reduction of the prothrombinase binding sites of these coagulation factors to platelets or phospholipid vesicles. 4. The prothrombinase activity of platelets stimulated with ionophore A23187 or with collagen plus thrombin is also inhibited by β2-glycoprotein-I in a manner similar to that oberved for phospholipid vesicles or for lysed platelets. These findings suggest a regulatory role for β2-glycoprotein-I in the pathway of blood coagulation.  相似文献   

10.
Breast cancer patients have an extremely high rate of bone metastases. Morphological analyses of the bones in most of the patients have revealed the mixed bone lesions, comprising both osteolytic and osteoblastic elements. β-Catenin plays a key role in both embryonic skeletogenesis and postnatal bone regeneration. Although this pathway is also involved in many bone malignancy, such as osteosarcoma and prostate cancer-induced bone metastases, its regulation of breast cancer bone metastases remains unknown. Here, we provide evidence that the β-catenin signaling pathway has a significant impact on the bone lesion phenotype. In this study, we established a novel mouse model of mixed bone lesions using intratibial injection of TM40D-MB cells, a breast cancer cell line that is highly metastatic to bone. We found that both upstream and downstream molecules of the β-catenin pathway are up-regulated in TM40D-MB cells compared with non-bone metastatic TM40D cells. TM40D-MB cells also have a higher T cell factor (TCF) reporter activity than TM40D cells. Inactivation of β-catenin in TM40D-MB cells through expression of a dominant negative TCF4 not only increases osteoclast differentiation in a tumor-bone co-culture system and enhances osteolytic bone destruction in mice, but also inhibits osteoblast differentiation. Surprisingly, although tumor cells overexpressing β-catenin did induce a slight increase of osteoblast differentiation in vitro, these cells display a minimal effect on osteoblastic bone formation in mice. These data collectively demonstrate that β-catenin acts as an important determinant in mixed bone lesions, especially in controlling osteoblastic effect within tumor-harboring bone environment.  相似文献   

11.
Vaid M  Prasad R  Sun Q  Katiyar SK 《PloS one》2011,6(7):e23000
Metastatic melanoma is a leading cause of death from skin diseases, and is often associated with activation of Wnt/β-catenin signaling pathway. We have examined the inhibitory effect of silymarin, a plant flavanoid from Silybum marianum, on cell migration of metastasis-specific human melanoma cell lines (A375 and Hs294t) and assessed whether Wnt/β-catenin signaling is the target of silymarin. Using an in vitro invasion assay, we found that treatment of human melanoma cell lines with silymarin resulted in concentration-dependent inhibition of cell migration, which was associated with accumulation of cytosolic β-catenin, while reducing the nuclear accumulation of β-catenin (i.e., β-catenin inactivation) and reducing the levels of matrix metalloproteinase (MMP) -2 and MMP-9 which are the down-stream targets of β-catenin. Silymarin enhanced: (i) the levels of casein kinase 1α, glycogen synthase kinase-3β and phosphorylated-β-catenin on critical residues Ser(45), Ser(33/37) and Thr(41), and (ii) the binding of β-transducin repeat-containing proteins (β-TrCP) with phospho forms of β-catenin in melanoma cells. These events play important roles in degradation or inactivation of β-catenin. To verify whether β-catenin is a potent molecular target of silymarin, the effect of silymarin was determined on β-catenin-activated (Mel 1241) and β-catenin-inactivated (Mel 1011) melanoma cells. Treatment of Mel 1241 cells with silymarin or FH535, an inhibitor of Wnt/β-catenin pathway, significantly inhibited cell migration of Mel 1241 cells, which was associated with the elevated levels of casein kinase 1α and glycogen synthase kinase-3β, and decreased accumulation of nuclear β-catenin and inhibition of MMP-2 and MMP-9 levels. However, this effect of silymarin and FH535 was not found in Mel 1011 melanoma cells. These results indicate for the first time that silymarin inhibits melanoma cell migration by targeting β-catenin signaling pathway.  相似文献   

12.
Roles of β-catenin in somitogenesis in rat embryos   总被引:2,自引:0,他引:2  
Summary We studied the roles of β-catenin in somitogenesis using immunostaining and antisense experiments in rat embryos. High levels of β-catenin appeared transiently in the developing rat somites. Initially, β-catenin accumulation was observed in the core cells of presomitic cell aggregates and then in the lumen of epithelial vesicles. Subsequently, it was confined to the dermomyotomes and their lumen and then the myotomes. High levels of cyclin D1 were observed in the core cells, in the lumen of epithelial vesicles, in myotomes, and in mesenchymal sclerotomes. When embryos were cultured in medium supplemented with β-catenin antisense oligodeoxynucleotide (ODN), the accumulation of β-catenin, but not of cyclin D1, in the nascent somites and dermomyotomes was suppressed, while the number of somites was the same as that observed in control embryos. The number of myosin-positive somites and the amount of myosin per somite in embryos treated with the antisense ODN were lower than those in controls. These results suggested that β-catenin promotes development of myotomal cells during somitogenesis. The function of β-catenin in the development of myotomes may not be correlated to cyclin D1.  相似文献   

13.
Brown adipocytes play an important role in regulating energy balance, and there is a good correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism of white adipocyte differentiation has been well characterized, brown adipogenesis has not been studied extensively. Moreover, extracellular factors that regulate brown adipogenic differentiation are not fully understood. Here, we assessed the mechanism of the regulatory action of myostatin in brown adipogenic differentiation using primary brown preadipocytes. Our results clearly showed that differentiation of brown adipocytes was significantly inhibited by myostatin treatment. In addition, myostatin-induced suppression of brown adipogenesis was observed during the early phase of differentiation. Myostatin induced the phosphorylation of Smad3, which led to increased β-catenin stabilization. These effects were blocked by treatment with a Smad3 inhibitor. Expression of brown adipocyte-related genes, such as PPAR-γ, UCP-1, PGC-1α, and PRDM16, were dramatically down-regulated by treatment with myostatin, and further down-regulated by co-treatment with a β-catenin activator. Taken together, the present study demonstrated that myostatin is a potent negative regulator of brown adipogenic differentiation by modulation of Smad3-induced β-catenin stabilization. Our findings suggest that myostatin could be used as an extracellular factor in the control of brown adipocyte differentiation.  相似文献   

14.
In neural crest cell development, the expression of the cell adhesion proteins cadherin-7 and cadherin-11 commences after delamination of the neural crest cells from the neuroepithelium. The canonical Wnt signaling pathway is known to drive this delamination step and is a candidate for inducing expression of these cadherins at this time. This project was initiated to investigate the role of canonical Wnt signaling in the expression of cadherin-7 and cadherin-11 by treating neural crest cells with Wnt3a ligand. Expression of cadherin-11 was first confirmed in the neural crest cells for the chicken embryo. The changes in the expression level of cadherin-7 and -11 following the treatment with Wnt3a ligand were studied using real-time RT-PCR and immunostaining. Statistically significant up-regulation in the mRNA expression of cadherin-7 and cadherin-11 and in the amount of cadherin-7 and cadherin-11 protein found in cell-cell interfaces between neural crest cells was observed in response to Wnt, demonstrating that cadherin-7 and cadherin-11 expressed by the migrating neural crest cells can be regulated by the canonical Wnt pathway.  相似文献   

15.
Human β-defensins (hBD) are antimicrobial peptides that curb microbial activity. Although hBD's are primarily expressed by epithelial cells, we show that human platelets express hBD-1 that has both predicted and novel antibacterial activities. We observed that activated platelets surround Staphylococcus aureus (S. aureus), forcing the pathogens into clusters that have a reduced growth rate compared to S. aureus alone. Given the microbicidal activity of β-defensins, we determined whether hBD family members were present in platelets and found mRNA and protein for hBD-1. We also established that hBD-1 protein resided in extragranular cytoplasmic compartments of platelets. Consistent with this localization pattern, agonists that elicit granular secretion by platelets did not readily induce hBD-1 release. Nevertheless, platelets released hBD-1 when they were stimulated by α-toxin, a S. aureus product that permeabilizes target cells. Platelet-derived hBD-1 significantly impaired the growth of clinical strains of S. aureus. hBD-1 also induced robust neutrophil extracellular trap (NET) formation by target polymorphonuclear leukocytes (PMNs), which is a novel antimicrobial function of β-defensins that was not previously identified. Taken together, these data demonstrate that hBD-1 is a previously-unrecognized component of platelets that displays classic antimicrobial activity and, in addition, signals PMNs to extrude DNA lattices that capture and kill bacteria.  相似文献   

16.
17.
Heregulin can regulate the survival of cardiomyocytes, epithelial cells, neuron, glial cells, and other cell types through binding with the ErbB receptors. The aim of this study is to investigate the effects of heregulin (HRG) on the apoptosis of Bone marrow Mesenchymal stem cells (MSCs). We used the MSCs from adult Sprague–Dawley rats and the model of serum deprivation (SD) and hypoxia-induced apoptosis. The apoptosis was detected by TUNEL method. The apoptosis of MSCs significantly increased 12 h or 18 h after SD and hypoxia, but treatment with HRG significantly decreased the apoptosis induced by SD and hypoxia. Tyrphostin AG1478 (ErbB3/4 inhibitor) or Tyrphostin AG825 (ErbB2 inhibitor) could block this effects of HRG. Akt and ERK were activated by HRG under SD and hypoxia conditions, but HRG had no effects on the activation of JNK and p38. HRG also increased the ratio of Bcl-2/Bax and decreased the activation of caspase3 induced by SD and hypoxia. These results suggested HRG could decrease the apoptosis of MSCs induced by SD and hypoxia through the activation of Akt and ERK, the increase of Bcl-2/Bax ratio and the inhibition of caspase3 activation.  相似文献   

18.
19.
Hepatocarcinogenesis is a multistep process driving the progressive transformation of normal liver cells into highly malignant derivatives. Unlimited proliferation and telomere maintenance have been recognized as prerequisites for the development of liver cancer. Moreover, recent studies identified illegitimate β-catenin signaling as relevant hit in a considerable subset of patients. To further investigate the currently not well-understood malignant evolution driven by telomerase and β-catenin, we monitored cytogenetic and phenotypic alterations in untransformed telomerase-immortalized human fetal hepatocytes following forced activation of β-catenin signaling. As expected, constitutive activation of β-catenin signaling significantly enhanced proliferation with decreasing serum dependence. Previously intact contact inhibition was almost completely eliminated. Interestingly, after several passages in cell culture, immortalized clones with dominant-positive β-catenin signaling acquired additional chromosomal aberrations, in particular translocations, anchorage-independent growth capabilities, and formed tumors in athymic nude mice. In further support for the driving role of β-catenin during hepatocarcinogenesis, improved colony growth in soft agar and accelerated tumor formation was also confirmed in Huh7 cells following stable expression of the constitutively active S33Y β-catenin mutant. Telomerase inhibition showed that short-term expansion of transformed clones was not telomerase dependent. Finally, cancer pathway profiling in derived tumors revealed upregulation of characteristic genes associated with invasion and angiogenesis. In conclusion, illegitimate activation of β-catenin signaling enhances the transformation from immortalization to malignant growth in human fetal hepatocytes. Our data functionally confirm a permissive role for β-catenin signaling in the initial phase of hepatocarcinogenesis.  相似文献   

20.
Human β-mannosidase (MANB) was purified to homogeneity directly from lysosomes by using mannosamine conjugated magnetic (Fe3O4) nanoparticles, DE-52 cellulose, and sephadex G-200 chromatography. Fe3O4 nanoparticles were synthesized and utilized ammonia to attach the amino group on the nanoparticles. The particles were covalently attached with D-mannosamine by cross linker glutaraldehyde and confirmed by FTIR spectroscopy. In FTIR analysis, the peaks appeared at 2,356.6 cm−1 for −N = CH linkage and at 3,378.4 cm−1, 3,664.9 cm−1 for −OH groups confirmed the conjugation of D-mannosamine with Fe3O4 nanoparticles. Results showed a single band of 97 kDa of purified MANB in SDS-PAGE. The isoelectric point was 4.5 and the Km and Vmax values were 2.51 mM and 0.315 μM/min/mg, respectively. The purification fold was 329 with 68% yield. The optimal activity was at pH 5.0 and 75% activity was stable in 20% glycerol at 4°C. The enzyme activity was inhibited by Ni2+, Zn2+, Cd2+, Cu2+, Mo2+, Ag+1, iodoacetate, SDS, DMF, DMSO, ethanol, and acetone; slightly reduced by Pb2+, Co2+, EDTA, DTT, and β-mercaptoethanol. The activity was not affected by Mg2+, Mn2+, Sn2+, Ca2+, Fe3+, PMSF, Triton X-100, D-mannosamine, D-mannose, D-mannitol, D-glucose, and D-fructose. The homogeneity of MANB enzyme was further confirmed by 2D-PAGE and immunoblot. This is the first novel report of conjugation of D-mannosamine with Fe3O4 nanoparticles for purification of human MANB enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号