首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current quality control of inactivated animal vaccines still focuses on the potency of final products in a batch-wise manner. Animal welfare concerns as well as scientific considerations have led to the ‘3Rs-concept’ that comprises the refinement of animal procedures, the reduction of animal numbers, and the replacement of animal models. Although the 3Rs-concept has been widely accepted as a fundamental principle, the number of approved alternatives for in vivo tests is still limited. To promote further progress, the international scientific workshop ‘Potency Testing of Veterinary Vaccines: The Way from in vivo to in vitro’ was held at the Paul-Ehrlich-Institut in Langen, Germany, on 01-03 December 2010. More than 130 participants from industry, academia and regulatory authorities discussed the current state of the 3Rs-concept, examples of its successful implementation as well as still existing hurdles. Special emphasis was laid on the ‘consistency approach’ that aims to ensure relevant quality attributes of vaccine batches by in vitro analyses during production rather than by in vivo potency tests on the final product. This report provides an overview of the insights gained, including the recommendations produced at the end of the workshop.  相似文献   

2.
The in vitro production of porcine embryos has presented numerous challenges to researchers over the past four decades. Some of the problems encountered were specific to porcine gametes and embryos and needed the concerted efforts of many to overcome. Gradually, porcine embryo in vitro production systems became more reliable and acceptable rates of blastocyst formation were achieved. Despite the significant improvements, the problem of polyspermic fertilization has still not been adequately resolved and the embryo in vitro culture conditions are still considered to be suboptimal. Whereas early studies focused on increasing our understanding of the reproductive processes involved, the technology evolved to the point where in vitro-matured oocytes and in vitro-produced embryos could be used as research material for developing associated reproductive technologies, such as SCNT and embryo cryopreservation. Today, the in vitro procedures used to mature oocytes and culture embryos are integral to the production of transgenic pigs by SCNT. This review discusses the major achievements, advances, and knowledge gained from porcine embryo in vitro production studies and highlights the future research perspectives of this important technology.  相似文献   

3.
Coxiella burnetii, an obligate intracellular bacterium of worldwide distribution, is responsible for Q fever. Domestic ruminants are the main source of infection for humans. The objectives of this study were to determine (1) whether C. burnetii would adhere to the intact zona pellucida (ZP-intact) of early in vitro–produced bovine embryos; (2) whether the bacteria would adhere to or infect the embryos (ZP-free) after in vitro infection; and (3) the efficacy of the International Embryo Transfer Society (IETS) washing protocol. One hundred and sixty, eight- to 16-cell bovine embryos produced in vitro, were randomly divided into 16 batches of 10 embryos. Twelve batches (eight ZP-intact and four ZP-free) were incubated in a medium containing C. burnetii CbB1 (Infectiologie Animale et Santé Publique, Institut National de Recherche Agronomique Tours, France). After 18 hours of incubation at 37 °C and 5% CO2 in air, the embryos were washed in 10 successive baths of a PBS and 5% fetal calf serum solution in accordance with the IETS guidelines. In parallel, four batches (two ZP-intact and two ZP-free) were subjected to similar procedures but without exposure to C. burnetii to act as controls. Ten washing fluids from each batch were collected and centrifuged for 1 hour at 13,000× g. The embryos and wash pellets were tested using conventional polymerase chain reaction. C. burnetii DNA was found in all ZP-intact and ZP-Free embryos after 10 successive washes. It was also detected in the first four washing fluids for ZP-intact embryos and in the 10th wash fluid for two of the four batches of ZP-free embryos. In contrast, none of the embryos or their washing fluids in the control batches were DNA positive. These results demonstrate that Cburnetii adheres to and/or penetrates the early embryonic cells and the ZP of in vitro bovine embryos after in vitro infection, and that the standard washing protocol recommended by the IETS for bovine embryos, failed to remove it. The persistence of these bacteria after washing makes the embryo a potential means of transmission of the bacterium during embryo transfer from infected donor cows to healthy recipients and/or their offspring. Further studies are required to investigate whether enzymatic and/or antibiotic treatment of bovine embryos infected by C. burnetii would eliminate the bacteria from the ZP and to verify if similarly results are obtained with in vivo–derived embryos.  相似文献   

4.
The aim of the present study was to examine the effects of CUDC-101, a novel histone deacetylase inhibitor, on the in vitro development and expression of the epigenetic marker histone H3 at lysine 9 (AcH3K9) in pig SCNT embryos. We found that treatment with 1 μmol/L CUDC-101 for 24 hours significantly improved the development of pig SCNT embryos. Compared with the control group, the blastocyst rate was higher (18.5% vs. 10.3%; P < 0.05). To assess in vivo developmental potency, CUDC-101–treated SCNT embryos were transferred into two surrogate mothers, resulting in one pregnancy with six fetuses. We then investigated the acetylation level of histone H3K9 in SCNT embryos treated with CUDC-101 and compared them only against untreated embryos. The acetylation level of control SCNT embryos was lower than that of CUDC-101–treated embryos at pseudo-pronuclear stages, and immunofluorescent signal for H3K9ac in CUDC-101–treated embryos in a pattern similar to that of control group. In conclusion, we demonstrated that CUDC-101 can significantly improve in vitro and in vivo developmental competence and enhance the nuclear reprogramming of pig SCNT embryos.  相似文献   

5.
In order to better understand the antioxidant behavior of a series of polyphenolic 2′-hydroxychalcones, we describe the results of several chemical and biological studies, in vitro and in vivo. Single crystal X-ray methods elucidated their molecular structures and important intermolecular interactions such as H-bonding and molecular stacking in the crystal structures that contribute to our knowledge in explaining antioxidant activity. The results of experiments using the 1,1-diphenyl-2-dipicrylhydrazyl (DPPH) UV–vis spectroscopic method indicate that a hydroxyl group in position 5′ induces the highest antioxidant activity. Consequently, 2,2′,5′-trihydroxychalcone was selected for further study in vitro towards ROS scavenging in L-6 myoblasts and THP-1 human monocytes, where it shows an excellent antioxidant activity in a concentration range lower than that reported by most studies of related molecules. In addition, this chalcone shows a very selective activity: it inhibits the proliferation of leukemic cells, but it does not affect the normal L-6 myoblasts and human fibroblasts. In studying 2,2′,5′-trihydroxychalcone's effect on weight gain and serum glucose and insulin levels in Zucker fatty (fa/fa) rats we found that supplementing the diet with a 10 mg/kg dose of this chalcone (3 times weekly) blunted the increase in glucose that co-occurs with weight gain over the 6-week treatment period. It is concluded that 2,2′,5′-trihydroxychalcone has the potential to serve as a protective agent for some debilitating diseases.  相似文献   

6.
RNA-binding proteins (RNPs) participate in diverse processes of mRNA metabolism, and phosphorylation changes their binding properties. In spinach chloroplasts, 24RNP and 28RNP are associated with polynucleotide posphorylase forming a complex on charge of pre-mRNA 3′-end maturation. Here, we tested the hypothesis that the phosphorylation status of 24RNP and 28RNP, present in a spinach chloroplast mRNA 3′-UTR processing extract (CPE), controls the transition between petD precursor stabilization, 3′-UTR processing, and RNA degradation in vitro. The CPE processed or stabilized petD precursor depending on the ATP concentration present in an in vitro 3′-UTR processing (IVP) assay. These effects were also observed when ATP was pre-incubated and removed before the IVP assay. Moreover, a dephosphorylated (DP)-CPE degraded petD precursor and recovered 3′-UTR processing or stabilization activities in an ATP concentration dependent manner. To determine the role 24/28RNP plays in regulating these processes a 24/28RNP-depleted (Δ24/28)CPE was generated. The Δ24/28CPE degraded the petD precursor, but when it was reconstituted with recombinant non-phosphorylated (NP)-24RNP or NP-28RNP, the precursor was stabilized, whereas when Δ24/28CPE was reconstituted with phosphorylated (P)-24RNP or P-28RNP, it recovered 3′-UTR processing, indicating that 24RNP or 28RNP is needed to stabilize the precursor, have a redundant role, and their phosphorylation status regulates the transition between precursor stabilization and 3′-UTR processing. A DP-Δ24/28CPE reconstituted or not with NP-24/28RNP degraded petD precursor. Pre-incubation of DP-Δ24/28CPE with NP-24/28RNP plus 0.03 mM ATP recovered 3′-UTR processing activity, and its reconstitution with P-24/28RNP stabilized the precursor. However, pre-incubation of DP-Δ24/28CPE with 0.03 mM ATP, and further reconstitution with NP-24/28RNP or P-24/28RNP produced precursor stability instead of RNA degradation, and RNA processing instead of precursor stability, respectively. Moreover, in vitro phosphorylation of CPE showed that 24RNP, 28RNP, and other proteins may be phosphorylated. Altogether, these results reveal that phosphorylation of 24RNP, 28RNP, and other unidentified CPE proteins mediates the in vitro interplay between petD precursor stability, 3′-UTR processing, and degradation, and support the idea that protein phosphorylation plays an important role in regulating mRNA metabolism in chloroplast.  相似文献   

7.
Phosphodiesterase (PDE) inhibitors have been utilized for in vitro maturation (IVM) of oocytes to manipulate the meiotic resumption and progression. Premature chromatin condensation and DNA replication of the oocytes, immediately after the decrease in the cAMP level, are the difficulties in canine IVM. Caffeine, a nonselective competitive PDE inhibitor, due to its structural similarity to adenosine molecule maintains the cAMP level by occupying PDE enzymes such as PDE-3A inside the oocyte and PDE-4 and PDE-5 in the cumulus cells. In this study, the effects of 12-hour caffeine pretreatment in a biphasic IVM protocol were assessed on maturation rates of canine oocytes. Sixty hours of culture after a 12-hour of 10 mM caffeine pretreatment resulted in 16.9% ± 2.4 of the oocytes reaching metaphase II stage (MII) and 25.9% ± 5.2 degeneration rate compared with the control group with 2.2% ± 2.2 MII and 37.6% ± 4.3 degeneration rates (P < 0.05). Caffeine pretreatment induced higher mitogen-activated protein kinases (MAPK1 and MAPK3) phosphorylation and maturation-promoting factor activity at 12 hours and activated MAPK1 and maturation-promoting factor at 48 hours after culture in cumulus-oocyte complexes (COCs) compared with the control group (P < 0.05). Fresh canine COCs were also analyzed before IVM using brilliant cresyl blue (BCB) staining. Oocytes showed difference in meiotic resumption (MI-MII) (BCB+ = 16.11% ± 5.5, BCB− = 9.86% ± 5.0; P < 0.05) after 60 hours of culture following 12-hour caffeine pretreatment. The BCB+ canine oocytes had higher MII rate than the BCB− group under caffeine pretreatment (10.2% ± 2.9 vs. 1.1% ± 1.1, respectively; P < 0.05). Results indicated that 12-hour caffeine pretreatment of canine COCs improves the MII maturation rates at 72 hours and BCB+ oocytes have higher competency in vitro for nuclear maturation.  相似文献   

8.
Knockdown of gene expression by antisense morpholino oligos (MOs) is a simple and effective method for analyzing the roles of genes in mammalian cells. Here, we demonstrate the efficient delivery of MOs by Endo-Porter (EP), a special transfection reagent for MOs, into preimplantation mouse embryos cultured in vitro. A fluorescein-labeled control MO was applied for monitoring the incorporation of MOs into developing 2-cell embryos in the presence of varying amounts of EP and bovine serum albumin. In optimized conditions, fluorescence was detected in 2-cell embryos within a 3-h incubation period. In order to analyze the validity of the optimized conditions, an antisense Oct4 MO was applied for knockdown of the synthesis of OCT4 protein in developing embryos from the 2-cell stage. In blastocysts, the antisense Oct4 MO induced a decrease in the amount in OCT4 protein to less than half. An almost complete absence of OCT4-positive cells and nearly complete disappearance of the inner cell mass in the outgrowths of blastocysts were also noted. These phenotypes corresponded with those of Oct4-deficient mouse embryos. Overall, we suggest that the delivery of MOs using EP is useful for the knockdown of gene expression in preimplantation mouse embryos cultured in vitro.  相似文献   

9.
Numerous studies have reported the implication of calcium-independent phospholipase A2 (iPLA2) in various biological mechanisms. Most of these works have used in vitro models and only a few have been carried out in vivo on iPLA2−/− mice. The functions of iPLA2 have been investigated in vivo in the heart, brain, pancreatic islets, and liver, but not in the retina despite its very high content in phospholipids. Phospholipids in the retina are known to be involved in several various key mechanisms such as visual transduction, inflammation or apoptosis. In order to investigate the implication of iPLA2 in these processes, this work was aimed to build an in vivo model of iPLA2 activity inhibition. After testing the efficacy of different chemical inhibitors of iPLA2, we have validated the use of bromoenol lactone (BEL) in vitro and in vivo for inhibiting the activity of iPLA2. Under in vivo conditions, a dose of 6 μg/g of body weight of BEL in mice displayed a 50%-inhibition of retinal iPLA2 activity 8–16 h after intraperitoneal administration. Delivering the same dose twice a day to animals was successful in producing a similar inhibition that was stable over one week. In summary, this novel mouse model exhibits a significant inhibition of retinal iPLA2 activity. This model of chemical inhibition of iPLA2 will be useful in future studies focusing on iPLA2 functions in the retina.  相似文献   

10.
The aim of this study was to characterize in canine oocytes and cumulus cells the dynamic expression of growth differentiation factor 9 (GDF-9) in relation to meiotic development and cumulus expansion throughout in vitro maturation (IVM). Cumulus oocytes complexes (COCs) from ovaries of adult bitches were cultured intact for IVM during 0, 48, 72, and 96 hours. At 0 hours or after IVM, COCs were divided into two groups: one group remained with their cumulus cells and in the other group the cumulus cells were extracted. The expression levels of GDF-9 were determined in both groups using indirect immunofluorescence and Western blot analysis. For immunofluorescence assay, in vivo-matured oocytes collected from oviducts were also used as a positive control. The nuclear stage was analyzed in parallel with 4′-6-diamidino-2-phenylindole staining in denuded oocytes from all maturing groups. The intensity of fluorescence, indicative of GDF-9 expression level, decreased with time (P < 0.05). High expression was observed only in germinal vesicle nonmature oocytes; in contrast, second metaphase oocytes showed only low expression. Western blot analysis showed bands of approximately 56 kd and a split band of approximately 20 kd representing the proprotein and possibly two mature protein forms of GDF-9, respectively. The proprotein was detected in all samples, and it was highly expressed before IVM and in a lesser degree, during the first 48 hours, declining thereafter in coincidence with the expansion of the cumulus cell (P < 0.05). There was a negative correlation (r = −0.97; P < 0.05) between the expression level of GDF-9 and mucification. Mature forms were evident only in COCs, before culture and up to 48 hours of IVM. It was concluded that GDF-9 is expressed in canine oocytes and cumulus cells, mainly in the early developmental states, with low levels in mature oocytes in vitro and in vivo, representing the first approach of GDF-9 dynamic in dog oocyte maturation.  相似文献   

11.
In vitro assay of mammalian DNA replication has been variously approached. Using gapped circular duplex substrates containing a 500-base single-stranded DNA region, we have constructed a mammalian cell-free system in which physiological DNA replication may be reproduced. Reaction of the gapped plasmid substrate with crude extracts of human HeLaS3 cells induces efficient DNA synthesis in vitro. The induced synthesis was strongly inhibited by aphidicolin and completely depended on dNTP added to the system. In cell extracts in which PCNA was depleted step-wise by immunoprecipitation, DNA synthesis was accordingly reduced. These data suggest that replicative DNA polymerases, particularly pol delta, may chiefly function in this system. Furthermore, DNA synthesis is made quantifiable in this system, which enables us to evaluate the efficiency of DNA replication induced. Our system sensitively and quantitatively detected the reduction of the DNA replication efficiency in the DNA substrates damaged by oxidation or UV cross-linking and in the presence of a potent chain terminator, ara-CTP. The quantitative assessment of mammalian DNA replication may provide various advantages not only in basic research but also in drug development.  相似文献   

12.
Recombinant gut hormone oxyntomodulin (OXM) is known to act as a satiety signal in human subjects and has therapeutic potential as an appetite controlling agent. The only form of this hormone that has a prospective use is a modified one, because native OXM has a very short half-life in vivo. Conjugation of OXM and the natural hydrophilic polymer polysialic acid (PSA) may significantly improve its half-life. Chemical polysialylation in vitro was used to create a long-acting form of OXM, the polysialic acid–oxyntomodulin (PSA–OXM) conjugate. The conjugation site was identified using mass shift comparative analysis of Asp-N proteolytic digests. The anorexic effect of the conjugate was tested on the lean, fasted mouse model. A two-stage purification technique was developed to obtain a homogeneous PSA–OXM conjugate, suitable for in vivo testing. The N-terminal backbone primary amino group was found to be the only point of conjugation. The conjugate obtained was resistant to the DPP-IV protease. A single injection of PSA–OXM at 15 μmol/kg dose was sufficient to maintain a steady decrease in food consumption for 8 h (P < 0.05). The length of the anorexic effect achieved is comparable to other long-acting derivatives of OXM but it requires a much higher dose for administration. It is expected that site-directed attachment of the PSA chain to the inner residues of OXM, away from the site of interaction with receptors, would produce a compound with a higher specific activity but comparable stability in the bloodstream. The conjugation technique used may be used to create OXM derivatives and other related hormones to obtain long-lasting variants, with improved suitability for clinical use.  相似文献   

13.
In many mammalian species, reproductive success decreases with maternal age. One proposed contributor to this age-related decrease in fertility is a reduction in the quantity or functionality of mitochondria in oocytes. This study examined whether maternal age or (in vitro maturation). IVM affect the quantity of mitochondria in equine oocytes. Oocytes were collected from the ovaries of slaughtered mares categorized as young (<12 years) or aged (≥12 years) and either denuded and prepared for analysis immediately (not-IVM) or matured in vitro for 30 hours before preparation (IVM). The mean oocyte mitochondrial DNA copy number was estimated by quantitative polymerase chain reaction and found to be significantly lower in oocytes from aged mares and that had been subjected to IVM than in any other group. Transmission electron microscopy demonstrated that mitochondria in aged mare oocytes subjected to IVM experienced significantly more swelling and loss of cristae than in other groups. We conclude that maternal aging is associated with a heightened susceptibility to mitochondrial damage and loss in equine oocytes, which manifests during IVM. This predisposition to mitochondrial degeneration probably contributes to reduced fertility in aged mares.  相似文献   

14.
Despite recent efforts to improve in vitro maturation (IVM) systems for porcine oocytes, developmental competence of in vitro-matured oocytes is still suboptimal compared with those matured in vivo. In this study, we compared oocytes obtained from large (≥8 mm; LF) and medium (3–7 mm; MF) sized follicles in terms of nuclear maturation, intracellular glutathione and reactive oxygen species levels, gene expression, and embryo developmental competence after IVM. In the control group, cumulus-oocyte complexes (COCs) were aspirated from MF and matured for 22 hours with hormones and subsequently matured for 18 to 20 hours without hormones at 39 °C, 5% CO2in vitro. In the LF group, COCs were obtained from follicles larger than 8 mm and were subjected to IVM for only 18 hours. The ovaries have LF were averagely obtained with 1.7% per day during 2012 and it was significantly higher in the winter season. The results of the nuclear stage assessment of the COCs from the LFs are as follows: before IVM (0 hours); germinal vesicle stage (15.2%), metaphase I (MI) stage (55.4%), anaphase and telophase I stages (15.8%), and metaphase II (MII) stage (13.6%). After 6 hours IVM; germinal vesicle (4.2%), MI (43.6%), anaphase and telophase I (9.4%), and MII (42.8%). After 18-hour IVM; MI (9.7%) and MII (90.3%). Oocytes from LF showed a significant (P < 0.001) increase in intracellular glutathione (1.41 vs. 1.00) and decrease in reactive oxygen species (0.8 vs. 1.0) levels compared with the control. The cumulus cells derived from LFs showed lower (P < 0.1) mRNA expression of COX-2 and TNFAIP6, and higher (P < 0.1) mRNA expression of PCNA and Nrf2 compared with the control group-derived cumulus cells. After parthenogenetic activation, in vitro fertilization and somatic cell nuclear transfer (SCNT) using matured oocytes from LFs, the embryo development was significantly improved (greater blastocyst formation rates and total cell numbers in blastocysts) compared with the control group. In conclusion, oocytes from LFs require only 18 hours to complete oocyte maturation in vitro and their developmental competence is significantly greater than those obtained from MFs. Although their numbers are limited, oocytes from LFs might offer an alternative source for the efficient production of transgenic pigs using SCNT.  相似文献   

15.
Reproduction may be affected by stressful events changing the female endocrine or metabolic profile. An altered environment during oocyte development could influence the delicate process of oocyte maturation. Here, the effect of simulated stress by media supplementation with blood plasma from sows after adrenocorticotropic hormone (ACTH) administration during the preovulatory period was assessed. Oocytes were matured for 46 hours in the presence of plasma from ACTH-treated sows, or plasma from NaCl-treated control sows, or medium without plasma (BSA group). The plasma used had been collected at 36 and 12 hours (±2 hours) before ovulation (for the first 24 hours + last 22 hours of maturation, respectively). Subsequent fertilization and embryo development were evaluated. Actin cytoskeleton and mitochondrial patterns were studied by confocal microscopy both in the oocytes and the resulting blastocysts. Nuclear maturation did not differ between treatments. Subtle differences were observed in the actin microfilaments in oocytes; however, mitochondrial patterns were associated with the treatment (P < 0.001). These differences in mitochondrial patterns were not reflected by in vitro outcomes, which were similar in all groups. In conclusion, an altered hormonal environment provided by a brief exposure to plasma from ACTH-treated sows during in vitro oocyte maturation could induce alterations in actin cytoskeleton and mitochondrial patterns in oocytes. However, these changes might not hamper the subsequent in vitro embryo development.  相似文献   

16.
We report an analysis in vivo of the RNA degradosome assembly of Escherichia coli. Employing fluorescence microscopy imaging and fluorescence energy transfer (FRET) measurements, we present evidence for in vivo pairwise interactions between RNase E–PNPase (polynucleotide phosphorylase), and RNase E–Enolase. These interactions are absent in a mutant strain with genomically encoded RNase E that lacks the C-terminal half, supporting the role of the carboxy-end domain as the scaffold for the degradosome. We also present evidence for in vivo proximity of Enolase–PNPase and Enolase–RhlB. The data support a model for the RNA degradosome (RNAD), in which the RNase E carboxy-end is proximal to PNPase, more distant to Enolase, and more than 10 nm from RhlB helicase. Our measurements were made in strains with mono-copy chromosomal fusions of the RNAD enzymes with fluorescent proteins, allowing measurement of the expression of the different proteins under different growth and stress conditions.  相似文献   

17.
A brief overview of the progress made during the past approximately 40 years on the development of methods for in vitro production of cat embryos and intra- and interspecies embryo transfer is described. The presentation is focused primarily on research done over the past 30 years at the Cincinnati Zoo (1980–1995) and at the Audubon Nature Institute, New Orleans (1996–present) beginning with original studies on determining optimal doses of porcine FSH for ovarian stimulation and uterine embryo recovery, cryopreservation, and transfer. A key early finding was the ability of cats to respond to multiple gonadotropin (porcine FSH) treatments by repeated stimulation of follicular development. With a ≥6-month interval between FSH treatments, over the past 15 years (1998–2013), we have done 1603 laparoscopic oocyte retrievals on 337 cats and recovered >38,000 mature oocytes (mean = 24.1 per laparoscopic oocyte retrieval). The limited information available on in vivo blastocyst development in the cat during the latter portion of the preimplantation period (approximately Days 8 to 12 after coitum or approximately Days 7 to 11 after ovulation) was assembled for the purpose of comparing and contrasting it with the growth, expansion, and zona functioning of in vitro-derived blastocysts. Also, results of transferring morulae and/or blastocysts into synchronous recipients are described to emphasize evidence that appears to allude to an essential role for an intact zona pellucida in successful implantation and subsequent development in the cat. Until 2003, our in vitro-derived embryos were transferred into the uterine horns of recipients to determine the feasibility of producing offspring from such primary methods as IVF, intracytoplasmic sperm injection, SCNT, and embryo cryopreservation. With the exception of SCNT embryos, pregnancy rates were satisfactory, but embryo survival rates were not. Subsequently, after finding that SCNT embryo survival rate could be improved using laparoscopic transfer of early cleavage stage embryos into the oviduct, we applied the technique to embryos derived using IVF with sex-sorted sperm, oocyte vitrification, and embryo cryopreservation. Overall, a pregnancy rate of 67% (14/21) has resulted. Most recently, with the oviductal embryo transfer technique, two litters of Black-Footed cat kittens have been born from intra- and interspecies transfer of cryopreserved embryos.  相似文献   

18.
On a global scale, cereal grains and animal feed may be contaminated with trichothecenes, such as deoxynivalenol and T-2 toxin, zearalenone (ZEA), and fumonisins, the major mycotoxins of Fusarium fungi. Of these mycotoxins, ZEA is unequivocally implicated in reproductive disorders of swine and other domestic animals. Experiments in vivo and in vitro indicate that ZEA and its metabolites exert estrogenic effects resulting in functional and morphological alterations in reproductive organs. Recently, the potential of trichothecenes and fumonisins to cause reproductive disorders in domestic animals has been investigated. The present review summarizes the toxicological data on the effects of Fusarium mycotoxins on ovarian function, testicular function, placenta and fetus, and puberty/sexual maturity of domestic animals. The results of in vivo animal studies and in vitro tests are reported and discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号