首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
Chen T  Zhou M  Rao P  Walker B  Shaw C 《Peptides》2006,27(7):1738-1744
The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and the North American pickerel frog (Rana palustris) occupy different ecological niches on two different continents with no overlap in geographical distribution. R. palustris skin secretions contain a formidable array of antimicrobial peptides including homologs of brevinin-1, esculentin-1, esculentin-2, ranatuerin-2, a temporin and a family of peptides considered of unique structural attributes when isolated, palustrins 1-3. Here we describe the structures of mature peptides and precursors of eight putative antimicrobial peptides from the skin secretion of the Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis). Each peptide represents a structural homolog of respective peptide families isolated from R. palustris, including two peptides identical in primary structure to palustrin 1c and palustrin 3b. Additionally, two peptides were found to be structural homologs of ranatuerin 2B and ranatuerin 2P from the closely-related North American species, Rana berlandieri (the Rio Grande leopard frog) and Rana pipiens (the Northern leopard frog), respectively. Both palustrins and ranatuerins have hitherto been considered unique to North American ranid frogs. The use of primary structures of amphibian skin antimicrobial peptides is thus questionable as a taxonomic device or alternatively, the micro-evolution and/or ancestry of ranid frogs is more highly complex than previously thought.  相似文献   

2.
3.
Antimicrobial peptide diversity has been found in some amphibians. The diversity of antimicrobial peptides may have resulted from the diversity of microorganisms encountered by amphibians. Peptidomics and genomics analyses were used to study antimicrobial peptide diversity in the skin secretions of the torrent frog, Amolops jingdongensis. Thirty-one antimicrobial peptides belonging to nine groups were identified in the skin secretions of this frog. Among them, there are two novel antimicrobial groups (jingdongin-1 and -2) with unique structural motifs. The other seven groups belong to known antimicrobial peptide families, namely brevinin-1, brevinin-2, odorranain-F, esculentin-2, temporin, amolopin-3, and ranacyclin. Combined with previous reports, more than 13 antimicrobial peptide groups have been identified from the genus Amolops. Most of these antimicrobial peptide groups are also found in amphibians belonging to the genus Rana or Odorrana which suggests a possible evolutionary connection among Amolops, Rana, and Odorrana. Two novel antimicrobial groups (jingdongin-1 and -2) were synthesized and their antimicrobial activities were assayed. Some of them showed strong antimicrobial abilities against microorganisms including Gram-negative and -positive bacteria, and fungi. The extreme diversity of antimicrobial peptides in the Amolops amphibians was demonstrated. In addition, several novel peptide templates were provided for antimicrobial agent design.  相似文献   

4.
5.
6.
The northern red-legged frog Rana aurora aurora and the California red-legged frog Rana aurora draytonii are traditionally classified together in the same species group. Ten peptides with antimicrobial activity were isolated from norepinephrine-stimulated skin secretions of R. aurora draytonii and purified to near homogeneity. The peptides were identified as belonging to the ranatuerin-2 family (two peptides), brevinin-1 family (four peptides), temporin family (three peptides), and a novel peptide, RV-23 (RIGVLLARLPKLFSLFKLMGKKV) that has limited structural similarity to the bee venom peptide, melittin. This distribution of peptides contrasts with that found previously in skin secretions from R. aurora aurora collected under the same conditions and at the same time of year (one ranatuerin-2 peptide, two brevinin-1 peptides, and one temporin peptide). The variation in amino acid sequences between corresponding R. aurora draytonii and R. aurora aurora peptides is comparable with the variation in sequences of orthologs from other members of the Amerana group of New World ranid frogs (Rana boylii, Rana muscosa, and Rana luteiventris). It is proposed, therefore, that the red-legged frogs should be regarded as separate species (R. aurora and R. draytonii) within the Amerana group rather than conspecific subspecies. The data emphasize that amino acid sequences of antimicrobial peptides in skin secretions may be used to infer taxonomic and phylogenetic relationships between species of ranid frogs.  相似文献   

7.
The chemical compounds synthesised and secreted from the dermal glands of amphibian have diverse bioactivities that play key roles in the hosts’ innate immune system and in causing diverse pharmacological effects in predators that may ingest the defensive skin secretions. As new biotechnological methods have developed, increasing numbers of novel peptides with novel activities have been discovered from this source of natural compounds. In this study, a number of defensive skin secretion peptide sequences were obtained from the European edible frog, P. kl. esculentus, using a ‘shotgun’ cloning technique developed previously within our laboratory. Some of these sequences have been previously reported but had either obtained from other species or were isolated using different methods. Two new skin peptides are described here for the first time. Esculentin-2c and Brevinin-2Tbe belong to the Esculentin-2 and Brevinin-2 families, respectively, and both are very similar to their respective analogues but with a few amino acid differences. Further, [Asn-3, Lys-6, Phe-13] 3-14-bombesin isolated previously from the skin of the marsh frog, Rana ridibunda, was identified here in the skin of P. kl. esculentus. Studies such as this can provide a rapid elucidation of peptide and corresponding DNA sequences from unstudied species of frogs and can rapidly provide a basis for related scientific studies such as those involved in systematic or the evolution of a large diverse gene family and usage by biomedical researchers as a source of potential novel drug leads or pharmacological agents.  相似文献   

8.
Amphibian skin secretions contain a broad spectrum of biologically active compounds, particularly antimicrobial peptides, which are considered to constitute a first line of defence against bacterial infection. Here we describe the identification of two prototype peptides representing a novel structural class of antimicrobial peptide from the skin secretion of the oriental broad-folded frog, Hylarana latouchii. Named hylaranin-L1 (GVLSAFKNALPGIMKIIVamide) and hylaranin-L2 (GVLSVIKNALPGIMRFIAamide), both peptides consist of 18 amino acid residues, are C-terminally amidated and are of unique primary structures. Their primary structures were initially deduced by MS/MS fragmentation sequencing from reverse-phase HPLC fractions of skin secretion that demonstrated antimicrobial activity. Subsequently, their precursor-encoding cDNAs were cloned from a skin secretion-derived cDNA library and their primary structures were confirmed unequivocally. Synthetic replicates of both peptides exhibited broad-spectrum antimicrobial activity with mean inhibitory concentrations (MICs) of 34 μM against Gram-negative Escherichia coli, 4.3 μM against Gram-positive Staphylococcus aureus and 4–9 μM against the yeast, Candida albicans. Both peptides exhibited little haemolytic activity (<6 %) at the MICs for S. aureus and C. albicans. Amphibian skin secretions thus continue to provide novel antimicrobial peptide structures that may prove to be lead compounds in the design of new classes of anti-infection therapeutics.  相似文献   

9.
Eight peptides with differential growth–inhibitory activity against the gram-positive bacterium Staphylococcus aureus, the gram-negative bacterium Escherichia coli and the yeast, Candida albicans were isolated from an extract of the skin of the North American pig frog Rana grylio. The primary structures of these antimicrobial peptides were different from previously characterized antimicrobial peptides from Ranid frogs but on the basis of sequence similarities, the peptides may be classified as belonged to four previously characterized peptide families: the ranatuerin-1, ranatuerin-2 and ranalexin families, first identified in the North American bullfrog, Rana catesbeiana, and the temporin family first identified in the European common frog Rana temporaria. Peptides belonging to the brevinin-1, brevinin-2, esculentin-1, and esculentin-2 families, previously isolated from the skins of other species of Ranid frogs, were not identified in the extracts. The ranatuerin-1 and ranalexin peptides showed broadest spectrum of antimicrobial activity whereas the temporins were active only against S. aureus. Synthetic replicates of temporin-1Gb (SILPTIVSFLSKFL.NH2) and temporin-1Gd (FILPLIASFLSKFL.NH2) produced concentration-dependent relaxation of preconstricted vascular rings from the rat thoracic aorta (EC50=2.4±0.1 μM for temporin-1Gb and 2.3±0.2 μM for temporin-1Gd). The antimicrobial peptides that were isolated in extracts of the skin R. grylio were present in the same molecular forms in electrically-stimulated skin secretions of the animal demonstrating that the peptides are stored in the granular glands of the skin in their fully processed forms.  相似文献   

10.
Yan H  Wei L  He X  Liu H  Yang S  Lai R  Rao D 《Biochimie》2012,94(8):1718-1723
A novel myotropic peptide, polypedatein, was purified and characterized from the skin secretions of the tree frog, Polypedates pingbianensis. Its primary structure, TLLCKYFAIC, was determined by Edman degradation and mass spectrometry. Polypedatein was subjected to bioassays including myotropic, antimicrobial, and serine protease inhibitory activities, which are related with many amphibian skin bioactive peptides. It was found to elicit concentration-dependent contractile effects on isolated rat ileum. cDNA clones encoding the precursor of polypedatein were isolated by screening a skin cDNA library of P. pingbianensis and then sequenced. The amino acid sequence deduced from the cDNA sequences matches well with the result from Edman degradation. BLAST search revealed that the sequence of polypedatein did not show similarity to known protein or peptide sequences. Especially, polypedatein does not contain conserved structural motifs of other amphibian myotropic peptides, such as bradykinins, bombesins, cholecystokinin (CCK), and tachykinins, indicating that polypedatein belongs to a novel amphibian myotropic peptide family. The signal peptide of the precursor encoding polypedatein shows significant sequence identity to that of other amphibian skin defensive peptides, such as antimicrobial peptides, bradykinins, lectins, and serine protease inhibitors, suggesting that polypedatein belongs to a novel amphibian myotropic peptide family. Polypedatein is also the first bioactive peptide from the genus of the frog, Polypedates.  相似文献   

11.
Granular glands in the skins of frogs synthesize and secrete a remarkably diverse range of peptides capable of antimicrobial activity. These anuran skin antimicrobial peptides are commonly hydrophobic, cationic and form an amphipathic α-helix in a membrane mimetic solution. Recently, they have been considered as useful target molecules for developing new antibiotics drugs. Esculentin-1c is a 46-amino acid residue peptide isolated from skin secretions of the European frog, Rana esculenta. It displays the most potent antimicrobial activity among bioactive molecules. Esculentin-1c has the longest amino acids among all antimicrobial peptides. The present study solved the solution structure of esculentin-1c in TFE/water by NMR, for the first time. We conclude that this peptide is comprised of three α-helices with each helix showing amphipathic characteristics, which seems to be a key part for permeating into bacterial membranes, thus presenting antimicrobial activity.  相似文献   

12.

The skin secretions of amphibians are a rich source of bioactive peptides. We isolated chensirin-1 and chensirin-2 from the skin secretion of the Chinese frog Rana chensinensis. Sephadex-G-50 and RP-HPLC were employed to purify these peptides. The amino acid sequences of these peptides were VLPLVGNLLNDLLGE and IIPLPLGYFAKKT, respectively, as determined by Edman degradation. The molecular weights were 1578.7 and 1460.8 Da, respectively, as analyzed by HPLC-ESI-MS. The chensirin cDNA was cloned by 5′ and 3′ amplification of cDNA ends, synthesized and purified. The antibacterial activities of the chensirins were tested using minimum inhibitory concentration, the results indicated that chensirins inhibit the growth of gram-negative and gram-positive bacteria. Among them, chensirin-1 is a novel peptide with a higher antibacterial activity compared to other similar antimicrobial peptides. These low molecular weight peptides with good antimicrobial efficacy are considered potential sources for developing new antimicrobial agents to improve traditional drug resistance.

  相似文献   

13.
Wu Y  Wang L  Zhou M  Ma C  Chen X  Bai B  Chen T  Shaw C 《Biochimie》2011,93(6):981-987
Amphibian skin secretions are rich sources of biologically-active peptides with antimicrobial peptides predominating in many species. Several studies involving molecular cloning of biosynthetic precursor-encoding cDNAs from skin or skin secretions have revealed that these exhibit highly-conserved domain architectures with an unusually high degree of conserved nucleotide and resultant amino acid sequences within the signal peptides. This high degree of nucleotide sequence conservation has permitted the design of primers complementary to such sites facilitating “shotgun” cloning of skin or skin secretion-derived cDNA libraries from hitherto unstudied species. Here we have used such an approach using a skin secretion-derived cDNA library from an unstudied species of Chinese frog - the Fujian large-headed frog, Limnonectes fujianensis - and have discovered two 16-mer peptides of novel primary structures, named limnonectin-1Fa (SFPFFPPGICKRLKRC) and limnonectin-1Fb (SFHVFPPWMCKSLKKC), that represent the prototypes of a new class of amphibian skin antimicrobial peptide. Unusually these limnonectins display activity only against a Gram-negative bacterium (MICs of 35 and 70 μM) and are devoid of haemolytic activity at concentrations up to 160 μM. Thus the “shotgun” cloning approach described can exploit the unusually high degree of nucleotide conservation in signal peptide-encoding domains of amphibian defensive skin secretion peptide precursor-encoding cDNAs to rapidly expedite the discovery of novel and functional defensive peptides in a manner that circumvents specimen sacrifice without compromising robustness of data.  相似文献   

14.
Screening for new bioactive peptides in South American anurans has been pioneered in frogs of the genus Phyllomedusa. All frogs of this genus have venomous skin secretions, i.e., a complex mixture of bioactive peptides against potential predators and pathogens that presumably evolved in a scenario of predator–prey interaction and defense against microbial invasion. For every new anuran species studied new peptides are found, with homologies to hormones, neurotransmitters, antimicrobials, and several other peptides with unknown biological activity. From Vittorio Erspamer findings, this genus has been reported as a “treasure store” of bioactive peptides, and several groups focus their research on these species. From 1966 to 2009, more than 200 peptide sequences from different Phyllomedusa species were deposited in UniProt and other databases. During the last decade, the emergence of high-throughput molecular technologies involving de novo peptide sequencing via tandem mass spectrometry, cDNA cloning, pharmacological screening, and surface plasmon resonance applied to peptide discovery, led to fast structural data acquisition and the generation of peptide molecular libraries. Research groups on bioactive peptides in Brazil using these new technologies, accounted for the exponential increase of new molecules described in the last decade, much higher than in any previous decades. Recently, these secretions were also reported as a rich source of multiple antimicrobial peptides effective against multidrug resistant strains of bacteria, fungi, protozoa, and virus, providing instructive lessons for the development of new and more efficient nanotechnological-based therapies for infectious diseases treatment. Therefore, novel drugs arising from the identification and analysis of bioactive peptides from South American anuran biodiversity have a promising future role on nanobiotechnology.  相似文献   

15.
Peptidomic analysis was used to compare the distribution of host-defense peptides in norepinephrine-stimulated skin secretions from laboratory-generated female F1 hybrids of the common clawed frog Xenopus laevis (Daudin, 1802) and Mueller's clawed frog Xenopus muelleri (Peters, 1844) with the corresponding distribution in skin secretions from the parent species. A total of 18 peptides were identified in secretions from the hybrid frogs. Eleven peptides (magainin-1, magainin-2, CPF-1, CPF-3, CPF-4, CPF-5, CPF-6, CPF-7, XPF-1, XPF-2, and PGLa) were identified in secretions of both the hybrids and X. laevis. Four peptides (magainin-M1, XPF-M1, CPF-M1, and tigerinin-M1) were previously found in skin secretions of X. muelleri but magainin-M2 and CPF-M2 from X. muelleri were not detected. Three previously undescribed peptides (magainin-LM1, PGLa-LM1, and CPF-LM1) were purified from the secretions of the hybrid frogs that were not detected in secretions from either X. laevis or X. muelleri. Magainin-LM1 differs from magainin-2 from X. laevis by a single amino acid substitution (Gly13  Ala) but PGLa-LM1 and CPF-LM1 differ appreciably in structure from orthologs in the parent species. CPF-LM1 shows potent, broad-spectrum antimicrobial activity and is hemolytic. The data indicate that hybridization increases the multiplicity of skin host-defense peptides in skin secretions. As the female F1 hybrids are fertile, hybridization may represent an adaptive strategy among Xenopus species to increase protection against pathogenic microorganisms in the environment.  相似文献   

16.
The International Union for Conservation of Nature (IUCN) Endangered Cape Platanna Xenopus gilli inhabits disjunct ranges at the tip of Cape Peninsula and near the town of Kleinmond on opposite sides of False Bay in the extreme southwest of Africa. Peptidomic analysis of host-defense peptides in norepinephrine-stimulated skin secretions from frogs from the Cape Peninsula range resulted in the identification of two magainins, two peptide glycine–leucine–amide (PGLa) peptides, two xenopsin-precursor fragment (XPF) peptides, nine caerulein-precursor fragment (CPF) peptides, and a peptide related to peptide glycine–glutamine (PGQ) previously found in an extract of Xenopus laevis stomach. The primary structures of the peptides indicate a close phylogenetic relationship between X. gilli and X. laevis but only magainin-1, PGLa and one CPF peptide are identical in both species. Consistent with previous data, the CPF peptides show the greatest antimicrobial potency but are hemolytic. There are appreciable differences in the expression of host-defense peptide genes in frogs from the population of animals sampled near Kleinmond as peptides corresponding to magainin-G2, XPF-G1, XPF-G2, and four CPF peptides, present in secretions from the Cape Peninsula frogs, were not identified in the skin secretions from Kleinmond frogs. Conversely, PGLa-G3, XPF-G3, and three CPF peptides were identified in the Kleinmond frogs but not in the Cape Peninsula animals. The data support the conclusion from morphometric analyses and comparisons of the nucleotide sequences of mitochondrial genes that the disjunct populations of X. gilli have undergone appreciable genetic, morphological, and phenotypic divergence.  相似文献   

17.
Zhou M  Chen T  Walker B  Shaw C 《Peptides》2006,27(9):2118-2123
Odorous frogs of the sub-genus Odorrana are of oriental distribution, and are so called due to the foul smell of their defensive skin secretions released from specialized skin glands following stress or predator attack. Here we report the application of a "shotgun" skin secretion cDNA library cloning technique which can rapidly expedite identification of secretion bioactive peptides. From a library constructed from the skin secretion of the Large Chinese Odorous frog, Rana (Odorrana) livida, we have identified four novel peptides whose primary structures were deduced initially from cloned precursors. Subsequently, mature peptides were located in and structurally characterized from reverse phase HPLC fractions of skin secretion. Named lividins 1-4, these were found to be structural homologs of known antimicrobial peptide families from Rana frogs. Rapid identification of novel peptides can thus be rapidly achieved using this non-invasive, non-destructive technology and the extensive similarities revealed between antimicrobial peptide precursor organization and nucleic acid sequences would lend support to the hypothesis that they have a common ancestral origin.  相似文献   

18.
Li X  Feng W  Zhou M  Ma C  Chen T  Zeller M  Hornshaw M  Wang L  Shaw C 《Biochimie》2011,93(9):1537-1542
Amphibian skin secretions are established sources of bioactive peptides. Here we describe the isolation, structural and pharmacological characterisation of a novel vasoconstrictor peptide from the skin secretion of the African hyperoliid frog, Kassina maculata, which exhibits no structural similarity to any known class of amphibian skin peptide. The peptide consists of 21 amino acid residues, FIKELLPHLSGIIDSVANAIK, and is C-terminally amidated. The provisional structure was obtained by MS/MS fragmentation using an Orbitrap mass spectrometer and L/I ambiguities were resolved following molecular cloning of biosynthetic precursor-encoding cDNA. A synthetic replicate of the peptide was found to possess weak antimicrobial and haemolytic activities but was exceptionally effective in constricting the smooth muscle of rat tail artery (EC50 of 25pM). In reflection of its exceptional potency in constricting rat arterial smooth muscle, the peptide was named kasstasin, a derivation of Kassina and “stasis” (stoppage of flow). These data illustrate the continuing potential of amphibian skin secretions to provide novel natural peptide templates for biological evaluation.  相似文献   

19.
The dorsal skin of the crawfish frog, Rana areolata, is associated with numerous prominent granular glands. Proteomic analysis of electrically stimulated skin secretions from these glands enabled the identification and characterization of eight peptides with antimicrobial and hemolytic activity belonging to the previously identified brevinin-1, temporin-1, palustrin-2, palustrin-3, esculentin-1 (two peptides), and ranatuerin-2 (two peptides) families. The primary structures of the peptides were consistent with a close phylogenetic relationship between R. areolata and the pickerel frog, Rana palustris. Three structurally related cationic, cysteine-containing peptides were identified that show sequence similarity to peptide Leucine–Arginine, a peptide with immunomodulatory and histamine-releasing properties from the skin of the northern leopard frog, Rana pipiens. The skin secretions contained a 61-amino-acid-residue peptide that inhibited porcine trypsin and possessed a 10-cysteine-residue motif that is characteristic of a protease inhibitor previously isolated from the parasitic nematode, Ascaris suum. A 48-amino-acid-residue protein containing eight cysteine residues in the whey acidic protein (WAP) motif, characteristic of elafin (skin-derived antileukoproteinase) and secretory leukocyte protease inhibitor, was also isolated. The data suggest that protease inhibitors in skin secretions may play a role complementary to cationic, amphipathic α-helical peptides in protecting anurans from invasions by microorganisms.  相似文献   

20.
Five novel antimicrobial peptides (temporin-LK1, rugosin-LK1, rugosin-LK2, gaegurin-LK1, and gaegurin-LK2) are purified and characterized from Kuhl’s wart frog skin secretions, Limnonectes kuhlii. They share obvious similarity to temporin, rugosin, and gaegurin antimicrobial peptide family, respectively. Their amino acid sequences were determined by Edman degradation and mass spectrometry, and further confirmed by cDNA cloning. Nine cDNA sequences encoding precursors of these five purified antimicrobial peptides and other four hypothetical antimicrobial peptides were cloned from the skin cDNA library of L. kuhlii. The deduced precursors are composed of a predicted signal peptide, an acidic spacer peptide, and a mature antimicrobial peptide. Most of them showed strong antimicrobial activities against Gram-positive and Gram-negative bacteria and fungi. The current work identified and characterized three families of antimicrobial peptides from L. kuhlii skins and confirmed that the genus of Limnonectes amphibians share similar antimicrobial peptide families with the genus of Rana amphibians. In addition, a unique antimicrobial peptide (temporin-LK1) with 17 residues including four phenylalanines, which is significantly different from other temporins (16 residues, one or two phenylalanines), was identified in this work. Such unique structure might provide novel template or leading structure to design antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号