首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
ABSTRACT: At the beginning of the 21st century cancer research has reached an impasse similar to that experienced in developmental biology in the first decades of the 20th century when conflicting results and interpretations co-existed for a long time until these differences were resolved and contradictions were eliminated. In cancer research, instead of this healthy "weeding-out" process, there have been attempts to reach a premature synthesis, while no hypothesis is being rejected. Systems Biology could help cancer research to overcome this stalemate by resolving contradictions and identifying spurious data. First, in silico experiments should allow cancer researchers to be bold and a priori reject sets of data and hypotheses in order to gain a deeper understanding of how each dataset and each hypothesis contributes to the overall picture. In turn, this process should generate novel hypotheses and rules, which could be explored using these in silico approaches. These activities are significantly less costly and much faster than "wet-experiments". Consequently, Systems Biology could be advantageously used both as a heuristic tool to guide "wet-experiments" and to refine hypotheses and test predictions.  相似文献   

4.
The pleiotropic effects of PPARα may include the regulation of amino acid metabolism. Nitric oxide (NO) is a key player in vascular homeostasis. NO synthesis may be jeopardized by a differential channeling of arginine toward urea (via arginase) versus NO (via NO synthase, NOS). This was studied in wild-type (WT) and PPARα-null (KO) mice fed diets containing either saturated fatty acids (COCO diet) or 18:3 n-3 (LIN diet). Metabolic markers of arginine metabolism were assayed in urine and plasma. mRNA levels of arginases and NOS were determined in liver. Whole-body NO synthesis and the conversion of systemic arginine into urea were assessed by using 15N2-guanido-arginine and measuring urinary 15NO3 and [15N]-urea. PPARα deficiency resulted in a markedly lower whole-body NO synthesis, whereas the conversion of systemic arginine into urea remained unaffected. PPARα deficiency also increased plasma arginine and decreased citrulline concentration in plasma. These changes could not be ascribed to a direct effect on hepatic target genes, since NOS mRNA levels were unaffected, and arginase mRNA levels decreased in KO mice. Despite the low level in the diet, the nature of the fatty acids modulated some effects of PPARα deficiency, including plasma arginine and urea, which increased more in KO mice fed the LIN diet than in those fed the COCO diet. In conclusion, PPARα is largely involved in normal whole-body NO synthesis. This warrants further study on the potential of PPARα activation to maintain NO synthesis in the initiation of the metabolic syndrome.  相似文献   

5.
The α7 nicotinic receptors (NR) have been confirmed in the heart but their role in cardiac functions has been contradictory. To address these contradictory findings, we analyzed cardiac functions in α7 NR knockout mice (α7−/−) in vivo and ex vivo in isolated hearts. A standard limb leads electrocardiogram was used, and the pressure curves were recorded in vivo, in Arteria carotis and in the left ventricle, or ex vivo, in the left ventricle of the spontaneously beating isolated hearts perfused following Langedorff's method. Experiments were performed under basic conditions, hypercholinergic conditions, and adrenergic stress. The relative expression levels of α and β NR subunits, muscarinic receptors, β1 adrenergic receptors, and acetylcholine life cycle markers were determined using RT-qPCR. Our results revealed a prolonged QT interval in α7−/− mice. All in vivo hemodynamic parameters were preserved under all studied conditions. The only difference in ex vivo heart rate between genotypes was the loss of bradycardia in prolonged incubation of isoproterenol-pretreated hearts with high doses of acetylcholine. In contrast, left ventricular systolic pressure was lower under basal conditions and showed a significantly higher increase during adrenergic stimulation. No changes in mRNA expression were observed. In conclusion, α7 NR has no major effect on heart rate, except when stressed hearts are exposed to a prolonged hypercholinergic state, suggesting a role in acetylcholine spillover control. In the absence of extracardiac regulatory mechanisms, left ventricular systolic impairment is revealed.

  相似文献   


6.
7.
Recently, we identified a peptide (ERα17p, P(295)LMIKRSKKNSLALSLT(311)) that corresponds to the 295-311 sequence of the estrogen receptor α (ERα, hinge region) and which exerts a panel of pharmacological effects in breast cancer cells. Remarkably, these effects can result from the interaction of ERα17p with the plasma membrane. Herein, we show that ERα17p adopts a β-sheet secondary structure when in contact with anionic phospholipids and that it is engulfed within the lipid bilayer. While ERα17p increases the fluidity of membrane mimics, it weakly internalizes in living cells. In light of the above, one may evoke one important role of the 295-311 region of the ERα: the corresponding peptide could be secreted/delivered to the extracellular medium to interact with neighboring cells, both intracellularly and at the membrane level. Finally, the 295-311 region of ERα being in proximity to the cystein-447, the palmitoylation site of the ERα raises the question of its involvement in the interaction/stabilization of the protein with the membrane.  相似文献   

8.
9.
In Tangier disease, absence of ATP binding cassette transporter A1 (ABCA1) results in reduced plasma HDL and elevated triglyceride (TG) levels. We hypothesized that hepatocyte ABCA1 regulates VLDL TG secretion through nascent HDL production. Silencing of ABCA1 expression in oleate-stimulated rat hepatoma cells resulted in: 1) decreased large nascent HDL (>10 nm diameter) and increased small nascent HDL (<10 nm) formation, 2) increased large buoyant VLDL1 particle secretion, and 3) decreased phosphatidylinositol-3 (PI3) kinase activation. Nascent HDL-containing conditioned medium from rat hepatoma cells or HEK293 cells transfected with ABCA1 was effective in increasing PI3 kinase activation and reducing VLDL TG secretion in ABCA1-silenced hepatoma cells. Addition of isolated large nascent HDL particles to ABCA1-silenced hepatoma cells inhibited VLDL TG secretion to a greater extent than small nascent HDL. Similarly, addition of recombinant HDL, but not human plasma HDL, was effective in attenuating TG secretion and increasing PI3 kinase activation in ABCA1-silenced cells. Collectively, these data suggest that large nascent HDL particles, assembled by hepatic ABCA1, generate a PI3 kinase-mediated autocrine signal that attenuates VLDL maturation and TG secretion. This pathway may explain the elevated plasma TG concentration that occurs in most Tangier subjects and may also account, in part, for the inverse relationship between plasma HDL and TG concentrations in individuals with compromised ABCA1 function.  相似文献   

10.
11.
12.
Metal ions and metal coordination compounds bind to nucleic acids in a variety of ways, ranging from weak electrostatic interactions via hydrogen bonding and/or van der Waals forces to strong covalent binding. Metal ions naturally take part in the formation and the degradation of nucleic acids, and the propensity of certain metal coordination compounds to bind to nucleic acids, notably DNA, is enploited in cancer chemotherapy. Moreover, metal compounds have a wide potential as chemical probes for nucleic acid structures and as tools for nucleic acid processing.  相似文献   

13.
Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARα-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRβ-/- and LXRαβ-/-), beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARα agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARα agonists favors their desaturation and subsequent incorporation in neutral lipids.  相似文献   

14.
15.
16.
17.
Two alternatively spliced forms of human PPAR mRNA, PPAR1 and PPAR2, have been identified. PPAR1 mRNA gives rise to an active PPAR protein while PPAR2 mRNA gives rise to a form of PPAR which lacks the ligand-binding domain. PPAR2 is unable to activate a peroxisome proliferator response element (PPRE) reporter gene construct in transient transfection assays. Both PPAR1 and PPAR2 mRNA are present in human liver, kidney, testes, heart, small intestine, and smooth muscle. In human liver, PPAR2 mRNA abundance is approximately half that of PPAR1 mRNA; a correlation analysis of PPAR1 and PPAR2 mRNA mass revealed an r-value of 0.75 (n = 18). Additional studies with intact liver from various species, showed that the PPAR2/PPAR1 mRNA ratios in rat, rabbit, and mouse liver were less than 0.10; significantly lower than the 0.3 and 0.5 ratios observed in monkey and human livers, respectively. To determine if a high PPAR2/PPAR1 mRNA ratio was associated with insensitivity to peroxisome proliferators, we treated human, rat, and rabbit hepatocytes with WY14643, a potent PPARa activator, and measured acyl CoA oxidase (ACO) mRNA levels. Rat ACO mRNA levels increased markedly in response to WY14643 while human and rabbit hepatocytes were unresponsive. Thus, although the PPAR2/PPAR1 mRNA ratio is low in rabbits, this species is not responsive to peroxisome proliferators. Further studies with male and female rats, which vary significantly in their response to peroxisome proliferators, showed little difference in the ratio of PPAR2/PPAR1 mRNA. These data suggest that selective PPAR2 mRNA expression is not the basis for differential species or gender responses to peroxisome proliferators.  相似文献   

18.
Direct sequencing of exon 9 of the thyroid hormone receptor (TR) gene in a kindred with resistance to thyroid hormone revealed a substitution of threonine for methionine in codon 313 in one allele resulting from a T to C transition. This is a novel missense mutation that resides in one of the two mutational hot-spot regions of the TR gene suggesting altered triiodothyronine binding to this mutant receptor.  相似文献   

19.
Lin LC  Hsu SL  Wu CL  Liu WC  Hsueh CM 《Cellular signalling》2011,23(10):1640-1650
The primary goal of the study was to investigate how peroxisome proliferator-activated receptor γ (PPARγ) played a critical role in the protection of H460 cell, one of the non-small cell lung cancer (NSCLC) cells with multidrug resistance, from transforming growth factor β (TGFβ)-mediated mitoinhibition. In the study, TGFβ resistance of H460 cell was first confirmed by analyses of PPARγ expression, its interaction with TGFβ-induced Smad3 and phospho-Smad3 (p-Smad3) and survival of H460. Results showed that enable to escape from G2/M phase arrest, H460 cell had higher resistance to TGFβ-mediated mitoinhibition than CH27 (a drug sensitive control). TGFβ significantly increased PPARγ expression of H460 but not of CH27 cell whereas nuclear accumulation of p-Smad3 was only limited to CH27, the latter was believed to contribute to the induction of P21 waf1/cip1 and cyclin B1, cell cycle arrest at G2/M phase and TGFβ-mediated mitoinhibition of CH27 cell. TGFβ-induced PPARγ of H460 cell was further demonstrated to bind to Smad3 and p-Smad3, and GW9662 (PPARγ inhibitor) or PPARγ-specific shRNA could disrupt the binding. GW9662 also increased the nuclear accumulation of p-Smad3 that eventually led to the reduction of TGFβ resistance of H460. A transient knockdown of PPARγ with shRNA revealed a similar effect as GW9662. In addition, activation of P38 instead of ERK played a critical role in TGFβ-induced expression of PPARγ, which subsequently activated RhoA in H460 cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号