首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain. In primary cultures of astrocytes and neurons, Bmcc1s localized on intermediate filaments and microtubules and interacted directly with MAP6/STOP, a microtubule-binding protein responsible for microtubule cold stability. Bmcc1s overexpression inhibited MAP6-induced microtubule cold stability by displacing MAP6 away from microtubules. It also resulted in the formation of membrane protrusions for which MAP6 was a necessary cofactor of Bmcc1s. This study identifies Bmcc1s as a new MAP6 interacting protein able to modulate MAP6-induced microtubule cold stability. Moreover, it illustrates a novel mechanism by which Bmcc1 regulates cell morphology.  相似文献   

2.
The release of GA (mitochondrial glutaminase) from neurons following acute ischaemia or during chronic neurodegenerative diseases may contribute to the propagation of glutamate excitotoxicity. Thus an inhibitor that selectively inactivates the released GA may limit the accumulation of excess glutamate and minimize the loss of neurological function that accompanies brain injury. The present study examines the mechanism of inactivation of rat KGA (kidney GA isoform) by the small-molecule inhibitor BPTES [bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide]. BPTES is a potent inhibitor of KGA, but not of the liver GA isoform, glutamate dehydrogenase or gamma-glutamyl transpeptidase. Kinetic studies indicate that, with respect to glutamine, BPTES has a K(i) of approx. 3 microM. Moreover, these studies suggest that BPTES inhibits the allosteric activation caused by phosphate binding and promotes the formation of an inactive complex. Gel-filtration chromatography and sedimentation-velocity analysis were used to examine the effect of BPTES on the phosphate-dependent oligomerization of KGA. This established that BPTES prevents the formation of large phosphate-induced oligomers and instead promotes the formation of a single oligomeric species with distinct physical properties. Sedimentation-equilibrium studies determined that the oligomer produced by BPTES is a stable tetramer. Taken together, the present work indicates that BPTES is a unique and potent inhibitor of rat KGA and elucidates a novel mechanism of inactivation.  相似文献   

3.
Glutaminase (GA) in mammalian tissues occurs in three isoforms: LGA (liver-type), KGA (kidney-type) and GAC (a KGA variant). Our previous study showed that human malignant gliomas (WHO grades III and IV) lack expression of LGA mRNA but are enriched in GAC mRNA relative to KGA mRNA. Here we analyzed the expression of mRNAs coding for the three isoforms in the biopsy material derived from other central nervous system tumors of WHO grades I–III. Non-neoplastic resective epileptic surgery samples served as control, as did cultured rat astrocytes and neurons. The GAC mRNA/KGA mRNA expression ratio was as a rule higher in the neoplastic than in control tissues, irrespective of the cell type dominating in the tumor or tumor malignancy. LGA mRNA expression was relatively very low in cultured astrocytes, and very low to absent in astrocytoma pilocyticum, ependymoma and subependymal giant cell astrocytoma (SEGA), tumors of astrocytic origin. LGA mRNA expression was almost as high as that of KGA and GAC mRNA in cultured neurons and epileptic surgery samples which were enriched in neurons. LGA mRNA was also relatively high in ganglioglioma which contains a discernable proportion of neuronal cells, and in oligodendroglioma. The results show that low expression of LGA mRNA is a feature common to normal astrocytes and astroglia-derived tumor cells or ependymomas and can be considered as a cell-type, rather than a malignancy marker.  相似文献   

4.
In many tissues, inwardly rectifying K channels are coupled to seven- helix receptors via the Gi/Go family of heterotrimeric G proteins. This activation proceeds at least partially via G beta gamma subunits. These experiments test the hypothesis that G beta gamma subunits activate the channel even if released from other classes of heterotrimeric G proteins. The G protein-gated K channel from rat atrium, KGA/GIRK1, was expressed in Xenopus oocytes with various receptors and G proteins. The beta 2-adrenergic receptor (beta 2AR), a Gs-linked receptor, activated large KGA currents when the alpha subunit, G alpha s, was also overexpressed. Although G alpha s augmented the coupling between beta 2AR and KGA, G alpha s also inhibited the basal, agonist-independent activity of KGA. KGA currents stimulated via beta 2AR activated, deactivated, and desensitized more slowly than currents stimulated via Gi/Go-linked receptors. There was partial occlusion between currents stimulated via beta 2AR and the m2 muscarinic receptor (a Gi/Go-linked receptor), indicating some convergence in the mechanism of activation by these two receptors. Although stimulation of beta 2AR also activates adenylyl cyclase and protein kinase A, activation of KGA via beta 2AR is not mediated by this second messenger pathway, because direct elevation of intracellular cAMP levels had no effect on KGA currents. Experiments with other coexpressed G protein alpha and beta gamma subunits showed that (a) a constitutively active G alpha s mutant did not suppress basal KGA currents and was only partially as effective as wild type G alpha s in coupling beta 2AR to KGA, and (b) beta gamma subunits increased basal KGA currents. These results reinforce present concepts that beta gamma subunits activate KGA, and also suggest that beta gamma subunits may provide a link between KGA and receptors not previously known to couple to inward rectifiers.  相似文献   

5.
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), two pro‐inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL‐1β and/or TNF‐α treatment. Pre‐treatment with N‐Methyl‐d ‐aspartate (NMDA) receptor antagonist MK‐801 blocked cytokine‐induced glutamate production and alleviated the neurotoxicity, indicating that IL‐1β and/or TNF‐α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL‐1β or TNF‐α significantly upregulated the kidney‐type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up‐regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV‐1 encephalitis. In addition, IL‐1β or TNF‐α treatment increased the levels of KGA in cytosol and TNF‐α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.  相似文献   

6.
碳源和氮源对5-酮基-葡萄糖酸生成的影响   总被引:1,自引:0,他引:1  
氧化葡萄糖杆菌Gluconobacter oxydans可以将葡萄糖氧化成葡萄糖酸,并进一步氧化成2-酮基-葡萄糖酸(2KGA)和5-酮基-葡萄糖酸(5KGA),其中5KGA在催化剂的作用下能够转化为L(+)-酒石酸。为了提高5-酮基-葡萄糖酸产量,以仅生成5KGA的氧化葡萄糖杆菌Gluconobacter oxydans HGI-1为出发菌株,研究不同碳源(蔗糖、乳糖、麦芽糖、淀粉、葡萄糖)和有机氮源(酵母浸粉、鱼粉、玉米浆、黄豆饼粉、棉籽饼粉)对5KGA产量的影响。500 mL摇瓶试验结果表明,当葡萄糖浓度为100 g/L时,5KGA产量最高为98.20 g/L;当有机氮源为酵母浸粉、鱼粉和玉米浆,其添加量的蛋白含量为1.60%时,5KGA产量分别为100.20 g/L、109.10 g/L和99.83 g/L,其中,使用鱼粉的5KGA产量最高,使用玉米浆的5KGA产量比酵母浸粉略低。出于经济考虑,文中选择玉米浆作有机氮源,并在5 L发酵罐中进行分批发酵放大试验,5KGA的产量为93.80 g/L,最大生成速率为3.48 g/(L·h),平均生成速率为1.56 g/(L·h)。结果表明,葡萄糖和玉米浆分别为Gluconobacter oxydans HGI-1规模化生产5KGA的最适碳源和氮源,可利用葡萄糖几乎全部(85.93%)转化为5KGA。  相似文献   

7.
To establish and develop a biotechnological process of α-ketoglutaric acid (KGA) production by Yarrowia lipolytica, it is necessary to increase the KGA productivity and to reduce the amounts of by-products, e.g. pyruvic acid (PA) as major by-product and fumarate, malate and succinate as minor by-products. The aim of this study was the improvement of KGA overproduction with Y. lipolytica by a gene dose-dependent overexpression of genes encoding NADP+-dependent isocitrate dehydrogenase (IDP1) and pyruvate carboxylase (PYC1) under KGA production conditions from the renewable carbon source raw glycerol. Recombinant Y. lipolytica strains were constructed, which harbour multiple copies of the respective IDP1, PYC1 or IDP1 and PYC1 genes together. We demonstrated that a selective increase in IDP activity in IDP1 multicopy transformants changes the produced amount of KGA. Overexpression of the gene IDP1 in combination with PYC1 had the strongest effect on increasing the amount of secreted KGA. About 19 % more KGA compared to strain H355 was produced in bioreactor experiments with raw glycerol as carbon source. The applied cultivation conditions with this strain significantly reduced the main by-product PA and increased the KGA selectivity to more than 95 % producing up to 186 g l-1 KGA. This proved the high potential of this multicopy transformant for developing a biotechnological KGA production process.  相似文献   

8.
A comparative assay of nitrogen metabolism enzymes in the Yarrowia lipolytica mutant N1 grown under conditions promoting the overproduction of either alpha-ketoglutaric acid (KGA) or citric acid showed that the overproduction of KGA correlates with an increase in the activities of the NAD- and NADP-linked glutamate dehydrogenase, glutamic-pyruvic transaminase, and glutamic-oxaloacetic transaminase reactions. These reactions are likely to be responsible for the overproduction of KGA by this mutant. In contrast, the overproduction of citric acid correlated with a decline in the activities of the NAD- and NADP-linked glutamate dehydrogenases and with an increase in the activities of glutamine synthetase and glutamate synthase.  相似文献   

9.
The yeast Yarrowia lipolytica secretes high amounts of various organic acids, like citric, isocitric, pyruvic (PA), and α-ketoglutaric (KGA) acids, triggered by growth limitation and excess of carbon source. This is leading to an increased interest in this non-conventional yeast for biotechnological applications. To improve the KGA production by Y. lipolytica for an industrial application, it is necessary to reduce the amounts of by-products, e.g., fumarate (FU) and PA, because production of by-products is a main disadvantage of the KGA production by this yeast. We have examined whether the concentration of secreted organic acids (main product KGA and PA as major by-product and FU, malate (MA), and succinate (SU) as minor by-products) can be influenced by a gene-dose-dependent overexpression of fumarase (FUM) or pyruvate carboxylase (PYC) genes under KGA production conditions. Recombinant Y. lipolytica strains were constructed, which harbor multiple copies of the respective FUM1, PYC1 or FUM1, and PYC1 genes. Overexpression of the genes FUM1 and PYC1 resulted in strongly increased specific enzyme activities during cultivation of these strains on raw glycerol as carbon source in bioreactors. The recombinant Y. lipolytica strains showed different product selectivity of the secreted organic acids KGA, PA, FU, MA, and SU. Concentrations of the by-products FU, MA, SU, and PA decreased significantly at overproduction of FUM and increased at overproduction of PYC and also of FUM and PYC simultaneously. In contrast, the production of KGA with the multicopy strains H355A(FUM1) and H355A(FUM1-PYC1) was comparable with the wild-type strain H355 or slightly lower in case of H355(PYC1). KGA productivity was not changed significantly compared with strain H355 whereas product selectivity of the main product KGA was increased in H355A(FUM1).  相似文献   

10.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting the motor neurons. The majority of familial forms of ALS are caused by mutations in the Cu,Zn-superoxide dismutase (SOD1). In mutant SOD1 spinal cord motor neurons, mitochondria develop abnormal morphology, bioenergetic defects, and degeneration. However, the mechanisms of mitochondrial toxicity are still unclear. One possibility is that mutant SOD1 establishes aberrant interactions with nuclear-encoded mitochondrial proteins, which can interfere with their normal trafficking from the cytosol to mitochondria. Lysyl-tRNA synthetase (KARS), an enzyme required for protein translation that was shown to interact with mutant SOD1 in yeast, is a good candidate as a target for interaction with mutant SOD1 at the mitochondrion in mammals because of its dual cytosolic and mitochondrial localization. Here, we show that in mammalian cells mutant SOD1 interacts preferentially with the mitochondrial form of KARS (mitoKARS). KARS-SOD1 interactions occur also in the mitochondria of the nervous system in transgenic mice. In the presence of mutant SOD1, mitoKARS displays a high propensity to misfold and aggregate prior to its import into mitochondria, becoming a target for proteasome degradation. Impaired mitoKARS import correlates with decreased mitochondrial protein synthesis. Ultimately, the abnormal interactions between mutant SOD1 and mitoKARS result in mitochondrial morphological abnormalities and cell toxicity. mitoKARS is the first described member of a group of mitochondrial proteins whose interaction with mutant SOD1 contributes to mitochondrial dysfunction in ALS.  相似文献   

11.
α-Ketoglutaric acid production by Yarrowia lipolytica and its regulation   总被引:1,自引:0,他引:1  
The yeast Yarrowia lipolytica VKM Y-2412 was selected as a prospective producer of ??-ketoglutaric acid (KGA) from ethanol. The following peculiarities were found: (1) the intensive KGA production occurred only under the limitation of cell growth by thiamine and the excess of ethanol and nitrogen, (2) the production of KGA from ethanol required increased amount of zinc and iron ions, and (3) KGA production increased significantly with a high aeration at pH medium equal to 3.5. Under optimal conditions, the Y. lipolytica VKM Y-2412 produced up to 172?g?l?1 of KGA with the mass yield coefficient of 0.70?g?g?1.  相似文献   

12.
In previous research, a thiamine-auxotrophic yeast for alpha-ketoglutaric acid (KGA) overproduction was screened in our laboratory and named Yarrowia lipolytica WSH-Z06 (CCTCC no. M207143). However, the high concentration of by-products (mainly pyruvate) limited its application on an industrial scale. To enhance KGA production and reduce pyruvate (PA) accumulation, the pyruvate carboxylation pathway was regulated. By overexpressing the pyruvate carboxylase genes ScPYC1 from Saccharomyces cerevisiae and RoPYC2 from Rhizopus oryzae in Y. lipolytica WSH-Z06, the yields of KGA in Y. lipolytica-ScPYC1 and Y. lipolytica-RoPYC2 increased by 24.5 and 35.3?%, and the yields of PA decreased by 51.9 and 69.8?% in shake flasks, respectively. These changes in the expression levels and activities of key intracellular enzymes showed that enhancing the pyruvate carboxylation pathway had successfully redistributed the carbon flux from PA to KGA. Finally, by controlling the pH in a 3-L fermenter, the maximum concentration of KGA in Y. lipolytica-RoPYC2 reached 62.5?g?L?1 with an evident decrease in PA yield from 35.2 to 13.5?g?L?1.  相似文献   

13.
Selective, high-yield production of 5-keto-D-gluconate (5KGA) from D-glucose by Gluconobacter was achieved without genetic modification. 5KGA production by Gluconobacter suffers byproduct formation of 2-keto-D-gluconate (2KGA). By controlling the medium pH strictly in a range of pH 3.5-4.0, 5KGA was accumulated with 87% conversion yield from D-glucose. The pH dependency of 5KGA formation appeared to be related to that of gluconate oxidizing activity.  相似文献   

14.
A single-stage continuous fermentation process for the production of 2-keto-l-gulonic acid (2KGA) from l-sorbose using Ketogulonigenium vulgare DSM 4025 was developed. The chemostat culture with the dilution rate that was calculated based on the relationship between the 2KGA production rate and the 2KGA concentration was feasible for production with high concentration of 2KGA. In this system, 112.2 g/L of 2KGA on the average was continuously produced from 114 g/L of l-sorbose. A steady state of the fermentation was maintained for the duration of more than 110 h. The dilution rate was kept in the range of 0.035 and 0.043 h−1, and the 2KGA productivity was 3.90 to 4.80 g/L/h. The average molar conversion yield of 2KGA from l-sorbose was 91.3%. Under the optimal conditions, l-sorbose concentration was kept at 0 g/L. Meanwhile, the dissolved oxygen level was changing in response to the dilution rate and 2KGA concentration. In the dissolved oxygen (DO) range of 16% to 58%, it was revealed that the relationship between DO and D possessed high degree of positive correlation under the l-sorbose limiting condition (complete consumption of l-sorbose). Increasing D closer to the critical value for washing out point of the continuous fermentation, DO value tended to be gradually increased up to 58%. In conclusion, an efficient and reproducible continuous fermentation process for 2KGA production by K. vulgare DSM 4025 could be developed using a medium containing baker’s yeast without using a second helper microorganism.  相似文献   

15.
The ability of yeast to synthesize α-ketoglutaric acid (KGA) from ethanol has been studied. Thiamine-auxotrophic yeasts of different genera and species may be able to produce KGA; the main condition of synthesis is growth limitation by thiamine. Using a model culture, mutant Yarrowia lipolytica N 1, the principal conditions affecting KGA oversynthesis were identified. These were: thiamine concentration in medium and in cells, nitrogen and oxygen concentration in medium, and pH level. A KGA concentration of 49 g/l and a yield from ethanol consumed of 42% were achieved. Based on the results of the analysis of the activities of the key enzymes participating in ethanol metabolism and KGA synthesis, a concept of the mechanism of KGA biosynthesis by Y. lipolytica yeast is suggested and discussed. Received: 1 March 1999 / Received revision: 28 June 1999 / Accepted: 5 June 1999  相似文献   

16.
A comparative assay of nitrogen metabolism enzymes in the Yarrowia lipolytica mutant N1 grown under conditions promoting the overproduction of either -ketoglutaric acid (KGA) or citric acid showed that the overproduction of KGA correlates with an increase in the activities of the NAD- and NADP-linked glutamate dehydrogenase, glutamic–pyruvic transaminase, and glutamic–oxaloacetic transaminase reactions. These reactions are likely to be responsible for the overproduction of KGA by this mutant. In contrast, the overproduction of citric acid correlated with a decline in the activities of the NAD- and NADP-linked glutamate dehydrogenases and with an increase in the activities of glutamine synthetase and glutamate synthase.  相似文献   

17.
18.
The transport of 2-keto-D-gluconate (alpha-D-arabino-2-hexulopyranosonic acid; 2KGA) in vesicles prepared from glucose-grown Pseudomonas putida occurs by a saturable process with a Km of 110.0 +/- 2.9 microM and a Vmax. of 0.55 +/- 0.04 nmol X min-1 X (mg of protein)-1. The provision of phenazine methosulphate/ascorbate or L-malate leads to an accumulation of intravescular 2KGA, a decrease in the Km value to 50 +/- 2.1 microM and 35 +/- 2.9 microM respectively and no change in the Vmax. In the presence of electron donors the transport of 2KGA is inhibited by the respiratory poisons antimycin A, rotenone and the uncoupler 2,4-dinitrophenol. 2KGA transport is also competitively inhibited by 4-deoxy-4-fluoro-2-keto- or 3-deoxy-3-fluoro-2-keto-D-gluconate with Ki values of 50 microM and 160 microM respectively. The carrier system for 2KGA is repressed in vesicles from cells grown on succinate. Such vesicles transport 2KGA by non-specific physical diffusion with a Km value of infinity in the absence or presence of electron donors. Vesicles from glucose or succinate grown cells, in the presence of phenazine methosulphate/ascorbate at pH 6.6, generate a proton-motive force (delta p) of approx. 140 mV. The delta p, composed of proton gradient (delta pH) and a membrane potential (delta psi), is collapsed in the presence of dinitrophenol. Based on the results obtained with valinomycin, nigericin and carbonyl cyanide m-chlorophenylhydrazone, the active transport of 2KGA at pH 6.6 is coupled predominately to the delta pH component of delta p.  相似文献   

19.
We isolated thermotolerant Gluconobacter strains that are able to produce 5-keto-d-gluconic acid (5KGA) at 37°C, a temperature at which regular mesophilic 5KGA-producing strains showed much less growth and 5KGA production. The thermotolerant strains produced 2KGA as the major product at both 30 and 37°C. The amount of ketogluconates produced at 37°C was slightly less than the amount produced at 30°C. To improve the yield of 5KGA in these strains, we disrupted flavin adenine dinucleotide-gluconate dehydrogenase (FAD-GADH), which is responsible for 2KGA production. Genes for FAD-GADH were cloned by using inverse PCR and an in vitro cloning strategy. The sequences obtained for three thermotolerant strains were identical and showed high levels of identity to the FAD-GADH sequence reported for the genome of Gluconobacter oxydans 621 H. A kanamycin resistance gene cassette was used to disrupt the FAD-GADH genes in the thermotolerant strains. The mutant strains produced 5KGA exclusively, and the final yields were over 90% at 30°C and 50% at 37°C. We found that the activity of pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase, which is responsible for 5KGA production, increased in response to addition of PQQ and CaCl2 in vitro when cells were grown at 37°C. Addition of 5 mM CaCl2 to the culture medium of the mutant strains increased 5KGA production to the point where over 90% of the initial substrate was converted. The thermotolerant Gluconobacter strains that we isolated in this study provide a promising new option for industrial 5KGA production.Gluconobacter is a genus of acetic acid bacteria that are able to oxidize a broad range of sugars, sugar alcohols, and sugar acids, and large amounts of the corresponding oxidized products accumulate in the culture medium. Such “incomplete” oxidation is carried out by membrane-bound enzymes, whose catalytic sites face the periplasm. These enzymes catalyze the dehydrogenization of d-glucose, d-sorbitol, d-mannitol, glycerol, d-gluconate, and the keto-d-gluconates. All of these enzymes are firmly attached to the cytoplasmic membrane, and the electrons abstracted from the substrates are passed on to ubiquinone and then to terminal ubiquinol oxidases, forming simple respiratory chains which create the membrane potential necessary to produce biological energy for these microorganisms.The oxidation of d-glucose to ketogluconates is known to be catalyzed by a series of enzymes. Pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase oxidizes d-glucose to glucono-δ-lactone, and then gluconolactonase converts the glucono-δ-lactone to d-gluconate. The formation of ketogluconates in Gluconobacter strains has been reported to be catalyzed by two types of membrane-bound gluconate dehydrogenases (GADH) (10). One type is flavin adenine dinucleotide (FAD)-GADH, an FAD-containing, 2-keto-d-gluconate (2KGA)-producing enzyme, and the other type is a PQQ-containing, 5-keto-d-gluconate (5KGA)-producing enzyme. The former enzyme has three subunits: an FAD-containing dehydrogenase, a c-type cytochrome subunit containing three hemes, and a small subunit of unknown function (17). The latter enzyme, which produces 5KGA, is identical to the PQQ-containing polyol dehydrogenase (9), which is known as d-arabitol dehydrogenase (1), d-sorbitol dehydrogenase (20), or PQQ-dependent glycerol dehydrogenase (PQQ-GLDH) (2). PQQ-GLDH has broad substrate specificity but high regio- and stereospecificity, and it catalyzes reactions as predicted by the Bertrand-Hudson rule. This enzyme can oxidize d-gluconate only at the C-5 position to produce 5KGA from d-gluconate; however, the affinity of the enzyme for d-gluconate is quite low. The gene encoding this enzyme was cloned from Gluconobacter suboxydans IFO 3255 (11), and two open reading frames (ORFs) were found. One of these ORFs is believed to encode a hydrophobic protein with five membrane-spanning regions, and the other encodes a dehydrogenase subunit similar to that found in several PQQ-dependent enzymes, particularly the PQQ domain of membrane-bound glucose dehydrogenase. In contrast, 2KGA reductase and 5KGA reductase, the NADPH-dependent enzymes located in the cytoplasm, are thought to be involved in gluconate metabolism in the assimilation of 2KGA and 5KGA.5KGA is a useful raw material for the production of tartaric acid and xylaric acid and is used as a precursor for the synthesis of a number of flavor compounds, including 4-hydroxy-5- methyl-2,3-dihydrofuranone-3 (15). Moreover, it has been reported that 5KGA can be used to produce vitamin C by Gray''s method (6, 7), which is different from Reichstein''s method, which is now commonly used in industry. Reichstein''s method requires the use of high temperatures and an organic solvent in processing; however, Gray''s method does not.Most Gluconobacter strains produce both 2KGA and 5KGA from d-gluconate. Thus, production of 5KGA by Gluconobacter species generates 2KGA as a major by-product, and production of the two ketogluconates is competitive in vivo. Recently, an FAD-GADH-defective mutant strain of Gluconobacter oxydans 621 H which produced almost exclusively 5KGA from d-glucose was discovered (5). However, the optimum temperature for production of 5KGA in this mesophilic strain was around 20°C (19). For cost-effective industrial synthesis of 5KGA, we sought to develop a Gluconobacter strain which is able to produce 5KGA at higher temperatures, such as 37°C, in order to reduce the cost of cooling during fermentation.We successfully isolated thermotolerant Gluconobacter strains that are able to produce 5KGA at 37°C. We cloned the FAD-GADH gene and constructed FAD-GADH-defective mutants that produced almost exclusively 5KGA from d-gluconate at both ambient temperatures and higher temperatures up to 37°C. We believe that the thermotolerant strains reported in this study should be useful for industrial 5KGA production.  相似文献   

20.
A comparative study of the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing alpha-ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号