首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemokines are a family of cytokines that induce directed migration of various types of leukocytes through specific interactions with a group of seven transmembrane receptors. Scavenger receptors are a heterogenous family of transmembrane molecules that commonly bind and uptake oxidized low density lipoprotein and bacteria. Here, we show that not only CXC chemokine 16 (CXCL16)/SR-PSOX, a transmembrane chemokine with scavenger receptor activity, but also 12 out of 15 chemokines examined efficiently bound scavenger receptor ligands in competition with cells expressing their specific chemokine receptors. Furthermore both the chemotactic and scavenger receptor activities of SR-PSOX/CXCL16 were similarly impaired in a series of mutants altered in the chemokine domain, indicating that SR-PSOX/CXCL16 binds scavenger receptor ligands as well as CXCR6 using highly overlapping binding motifs. Taken together, chemokines generally have scavenger receptor-like activity through their receptor-binding domain, suggesting a close evolutionary relationship between chemokines and scavenger receptors.  相似文献   

2.
Experimental autoimmune encephalomyelitis can be induced in susceptible animals by immunodominant determinants of myelin basic protein (MBP). To characterize the molecular features of antigenic sites important for designing experimental autoimmune encephalomyelitis suppressing molecules, we report structural studies, based on NMR experimental data in conjunction with molecular dynamic simulations, of the potent linear dodecapeptide epitope of guinea pig MBP, Gln74-Lys75-Ser76-Gln77-Arg78-Ser79-Gln80-Asp81-Glu82-Asn83-Pro84-Val85 [MBP(74-85)], and its antagonist analogue Ala81MBP(74-85). The two peptides were studied in both water and Me(2)SO in order to mimic solvent-dependent structural changes in MBP. The agonist MBP(74-85) adopts a compact conformation because of electrostatic interactions of Arg78 with the side chains of Asp81 and Glu82. Arg78 is 'locked' in a well-defined conformation, perpendicular to the peptide backbone which is practically solvent independent. These electrostatic interactions are, however, absent from the antagonist Ala81MBP(74-85), resulting in great flexibility of the side chain of Arg78. Sequence alignment of the two analogues with several species of MBP suggests a critical role for the positively charged residue Arg78, firstly, in the stabilization of the local microdomains (epitopes) of the integral protein, and secondly, in a number of post-translational modifications relevant to multiple sclerosis, such as the conversion of charged arginine residues to uncharged citrullines. Flexible docking calculations on the binding of the MBP(74-85) antigen to the MHC class II receptor site I-A(u) using haddock indicate that Gln74, Ser76 and Ser79 are MHC II anchor residues. Lys75, Arg78 and Asp81 are prominent, solvent-exposed residues and, thus, may be of importance in the formation of the trimolecular T-cell receptor-MBP(74-85)-MHC II complex.  相似文献   

3.
Insulin-like growth factor–binding protein-5 (IGFBP-5) has been shown to bind to fibroblast extracellular matrix (ECM). Extracellular matrix binding of IGFBP-5 leads to a decrease in its affinity for insulin-like growth factor-I (IGF-I), which allows IGF-I to better equilibrate with IGF receptors. When the amount of IGFBP-5 that is bound to ECM is increased by exogenous addition, IGF-I’s effect on fibroblast growth is enhanced. In this study we identified the specific basic residues in IGFBP-5 that mediate its binding to porcine smooth-muscle cell (pSMC) ECM. An IGFBP-5 mutant containing alterations of basic residues at positions 211, 214, 217, and 218 had the greatest reduction in ECM binding, although three other mutants, R214A, R207A/K211N, and K202A/R206N/R207A, also had major decreases. In contrast, three other mutants, R201A/K202N/R206N/R208A, and K217N/R218A and K211N, had only minimal reductions in ECM binding. This suggested that residues R207 and R214 were the most important for binding, whereas alterations in K211 and R218, which align near them, had minimal effects. To determine the effect of a reduction in ECM binding on the cellular replication response to IGF-I, pSMCs were transfected with the mutant cDNAs that encoded the forms of IGFBPs with the greatest changes in ECM binding. The ECM content of IGFBP-5 from cultures expressing the K211N, R214A, R217A/R218A, and K202A/R206N/R207A mutants was reduced by 79.6 and 71.7%, respectively, compared with cells expressing the wild-type protein. In contrast, abundance of the R201A/K202N/R206N/R208A mutant was reduced by only 14%. Cells expressing the two mutants with reduced ECM binding had decreased DNA synthesis responses to IGF-I, but the cells expressing the R201A/K202N/R206N/R208A mutant responded well to IGF-I. The findings suggest that specific basic amino acids at positions 207 and 214 mediate the binding of IGFBP-5 to pSMC/ECM. Smooth-muscle cells that constitutively express the mutants that bind weakly to ECM are less responsive to IGF-I, suggesting that ECM binding of IGFBP-5 is an important variable that determines cellular responsiveness.  相似文献   

4.
5.
Fujimoto N  Tanaka K  Suzuki T 《FEBS letters》2005,579(7):1688-1692
The purpose of this study is to clarify the amino acid residues responsible for the synergism in substrate binding of arginine kinase (AK), a key enzyme in invertebrate energy metabolism. AKs contain a pair of highly conserved amino acids (D62 and R193) that form an ion pair, and replacement of these residues can cause a pronounced loss of activity. Interestingly, in the oyster Crassostrea AK, these residues are replaced by an N and a K, respectively. Despite this replacement, the enzyme retains high activity and moderate synergism in substrate binding (Kd/Km=2.3). We replaced the N62 by G or D and the K193 by G or R in Crassostrea AK, and also constructed the double mutants of N62G/K193G and N62D/K193R. All of the mutants retained 50-90% of the wild-type activity. In N62G and N62D mutants, the Kmarg for arginine binding was comparable to that of wild-type enzyme, but the Kdarg was increased 2-5-fold, resulting in a strong synergism (Kd/Km=4.9-11.3). On the other hand, in K193G and K193R mutants, the Kmarg was increased 4-fold, and synergism was lost almost completely (Kd/Km=1.0-1.4). The N62G/K193G double mutant showed similar characteristics to the K193G and K193R mutants. Another double mutant, N62D/K193R, similar to the amino acid pair in the wild-type enzyme, had characteristics similar to those of the wild-type enzyme. These results indicate that the amino acid residues 62 and 193 play the key role in mediating the synergism in substrate binding of oyster arginine kinase.  相似文献   

6.
Point mutants of c-raf-1 RBD with elevated binding to v-Ha-Ras   总被引:4,自引:0,他引:4  
A mutational analysis of the Ras-binding domain (RBD) of c-Raf-1 identified three amino acid positions (Asn(64), Ala(85), and Val(88)) where amino acid substitution with basic residues increases the binding of RBD to recombinant v-Ha-Ras. The greatest increase in binding (6-9-fold) was observed with the A85K-RBD mutant. The elevated binding for the A85K-RBD and V88R-RBD mutants was also detected with Ras expressed in cultured mammalian cells, namely NIH-3T3 and BAF cells. None of the wild type residues in RBD positions Asn(64), Ala(85), and Val(88) have been previously implicated in the interaction with Ras (Block, C., Janknecht, R., Herrmann, C., Nassar, N., and Wittinghofer, A. (1996) Nat. Struct. Biol. 3, 244-251; Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995) Nature 375, 554-560). The discovery of elevated binding among the mutants in these positions implies that additional RBD residues can be used to generate the Ras. RBD complex. These findings are of particular significance in the design of Ras antagonists based on the RBD prototype. The A85K-RBD mutant can be used to develop an assay for measuring the level of activated Ras in cultured cells; Sepharose-linked A85K-RBD.GST fusion protein served as an activation-specific probe to precipitate Ras.GTP but not Ras.GDP from epidermal growth factor-stimulated cells. A85K-RBD precipitates up to 5-fold more Ras.GTP from mammalian cells than wild type RBD.  相似文献   

7.
The intracellular concentration of the 27-kDa mammalian heat shock protein, HSP27, increases several-fold after heat and other metabolic stresses and is closely associated with the acquisition of thermotolerance. Posttranslational modifications may also affect the function of HSP27. Heat shock of HeLa cell cultures, or treatment with arsenite, phorbol ester, or tumor necrosis factor, caused a rapid phosphorylation of preexisting HSP27 and the appearance of three phosphorylated isoforms, HSP27 B, C, and D. Digestion with trypsin and fractionation of the peptides by reverse phase high performance liquid chromatography revealed three 32P-labeled phosphopeptides. Microsequence analysis identified peak I as Ala76-Leu77-Ser78-Arg79 and peak II as Gln80-Leu81-Ser82-Ser83-Gly84-Val85- Ser86-Glu87-Ile88-Arg89; peak III contained the undigested peptide pair Ala76-Arg89. Ser82 was the major site and Ser78 the minor site of phosphorylation. Mutant proteins with Ser78 or Ser82 altered to glycine or Ser78-Ser82 double mutants were phosphorylated to reduced extents in vivo after heat or arsenite treatment. Ser78 and Ser82 (and Ser15) occur in the sequence motif RXXS, which is recognized by ribosomal protein S6 kinase II. Mitogenic stimulation of serum-deprived, Go-arrested Chinese hamster cells with serum, thrombin, or fibroblast growth factor also stimulated phosphorylation of HSP27 Ser78 and Ser82, and mitogenic stimulation and heat shock activated protein kinase activities that phosphorylated HSP27 and protein S6 in vitro. These results suggest that HSP27 may exert phosphorylation-activated functions linked with growth signaling pathways in unstressed cells. A homeostatic function at this level could protect cells from adverse effects of signal transduction systems which may be activated inappropriately during stress.  相似文献   

8.
A series of mutants were constructed to investigate the amino-acid residues responsible for the synergism in substrate binding of arginine kinase (AK). AK contains a pair of highly conserved amino acids (Y75 and P272) that form a hydrogen bond. In the locust (Locusta migratoria manilensis) AK, mutants in two highly conserved sites can cause pronounced loss of activity, conformational changes and distinct substrate synergism alteration. The Y75F and Y75D mutants showed strong synergism (Kd/Km=6.2-13.4), while in single mutants, P272G and P272R, and a double mutant, Y75F/P272G, the synergism was almost completely lost (Kd/Km=1.1-1.4). Another double mutant, Y75D/P272R, had characteristics similar to those of the wild-type enzyme. All these results suggest that the amino-acid residues 75 and 272 play an important role in regulating the synergism in substrate binding of AK. Fluorescence spectra showed that all mutants except Y75D/P272R displayed a red shift to different degrees. All the results provided direct evidence that there is a subtle relationship between the synergism in substrate binding and the conformational change.  相似文献   

9.
The purpose of this study is to clarify that the amino acid residues (Asp62 and Arg193) are responsible for the activity and stability of arginine kinase (AK). The amino acid residues Asp62 (D62) and Arg193 (R193) are strictly conserved in monomeric AKs and form an ion pair in the transition state analogue complex. In this research, we replaced D62 with glutamate (E) or glycine (G) and R193 with lysine (K) or glycine (G). The mutants of D62E and R193K retained almost 90% of the wild-type activity, whereas D62G and R193G had a pronounced loss in activity. A detailed comparison was made between the physic-chemical properties and conformational changes of wild-type AK and the mutants by means of ultraviolet (UV) difference and fluorescence spectra. The results indicated that the conformation of all of the mutants had been changed and the stability in a urea solution was also reduced. We speculated that the hydrogen bond and electrostatic interactions formed between residues 62 and 193 play a key role in stabilizing the structure and mediating the synergism in substrate binding of arginine kinase from greasyback shrimp (Metapenaeus ensis).  相似文献   

10.
虎纹捕鸟蛛毒素-XI (HWTX-XI) 是从虎纹捕鸟蛛粗毒中分离的含55个氨基酸残基的蛋白质,兼有胰蛋白酶抑制活性和电压门控钾离子通道抑制活性。通过突变HWTX-XI上的钾离子通道抑制活性关键氨基酸残基设计了2个突变体 (分别突变以下氨基酸残基:R5I,R10T,R25A和R5I,R25A),利用pVT102U/α表达载体在酿酒酵母S78中成功表达并获得了高纯度的重组蛋白质;通过分光光度计比色法、膜片钳技术和小鼠脑室注射分别比较三者的胰蛋白酶和钾通道抑制活性以及动物毒性,结果显示:HWTX-XI突变体与  相似文献   

11.
Ohta K  Masuda T  Ide N  Kitabatake N 《The FEBS journal》2008,275(14):3644-3652
Thaumatin is an intensely sweet-tasting protein. To identify the critical amino acid residue(s) responsible for elicitation of the sweetness of thaumatin, we prepared mutant thaumatin proteins, using Pichia pastoris, in which alanine residues were substituted for lysine or arginine residues, and the sweetness of each mutant protein was evaluated by sensory analysis in humans. Four lysine residues (K49, K67, K106 and K163) and three arginine residues (R76, R79 and R82) played significant roles in thaumatin sweetness. Of these residues, K67 and R82 were particularly important for eliciting the sweetness. We also prepared two further mutant thaumatin I proteins: one in which an arginine residue was substituted for a lysine residue, R82K, and one in which a lysine residue was substituted for an arginine residue, K67R. The threshold value for sweetness was higher for R82K than for thaumatin I, indicating that not only the positive charge but also the structure of the side chain of the arginine residue at position 82 influences the sweetness of thaumatin, whereas only the positive charge of the K67 side chain affects sweetness.  相似文献   

12.
Influenza A virus matrix protein (M1) plays an important role in virus assembly and budding. Besides a well-characterized basic amino acid-rich nuclear localization signal region at positions 101 to 105, M1 contains another basic amino acid stretch at positions 76-78 that is highly conserved among influenza A and B viruses, suggesting the importance of this stretch. To understand the role of these residues in virus replication, we mutated them to either lysine (K), alanine (A), or aspartic acid (D). We could generate viruses possessing either single or combination substitutions with K or single substitution with A at any of these positions, but not those with double substitutions with A or a single substitution with D. Viruses with the single substitution with A exhibited slower growth and had lower nucleoprotein/M1 quantitative ratio in virions compared to the wild-type virus. In cells infected with a virus possessing the single substitution with A at position 77 or 78 (R77A or R78A, respectively), the mutated M1 localized in patches at the cell periphery where nucleoprotein and hemagglutinin colocalized more often than the wild-type did. Transmission electron microscopy showed that virus possessing M1 R77A or R78A, but not the wild-type virus, was present in vesicular structures, indicating a defect in virus assembly and/or budding. The M1 mutations that did not support virus generation exhibited an aberrant M1 intracellular localization and affected protein incorporation into virus-like particles. These results indicate that the basic amino acid stretch of M1 plays a critical role in influenza virus replication.  相似文献   

13.
Each of the aromatic, acidic and basic amino acid residues in HM-1 were separately substituted with alanine by site-directed mutagenesis. The mutant genes were successfully expressed in HM-1 resistant Saccharomyces cerevisiae. HM-1 gene analogues corresponding to the aromatic substitutions resulted in lower production of HM-1 analogues. In the case of the acidic amino acid residue and basic amino acid residue substitutions, some analogues were produced in the same amount as and exhibited similar killing activity to that of the wild type HM-1. But the H35A HM-1 analogue had completely lost the killing activity, and D44A, K21A, K46A, R82A, R85A and R86A HM-1 showed highly decreased killing activities. These results strongly indicate the importance of histidine-35, aspartic acid-44, lysine-21, lysine-46, and C-terminal arginine residues in HM-1 for the killing activity.  相似文献   

14.
β2肾上腺素受体(β2adrenergic receptor,β2AR)是G蛋白耦联受体(G protein coupled receptors,GPCRs)超家族中的一员,也是研究治疗哮喘的关键药物受体靶标.采用进化踪迹(evolutionary trace,ET)方法分析肾上腺素受体家族跨膜区片段序列,识别出了44个保守的残基,然后将β2肾上腺素受体以及受体D130N活性突变体、D79N失活突变体进行分子动力学模拟,试图找出与受体不同功能状态相关的结构动力学特征.发现受体DRY motif中的D130远离R131而转向K149残基这一结构特征与受体活性高度关联,此外,从残基相互作用的变化推断出了受体helix 2,4 and 6伴随着受体活化而发生的运动.这些研究结果对进一步探索β2肾上腺素受体突变体的激活机制以及所诱发疾病的分子机理提供了依据.  相似文献   

15.
The role of hydrophobic residues of the mitochondrial carnitine/acylcarnitine carrier (CAC) in the inhibition by acylcarnitines has been investigated by site-directed mutagenesis. According to the homology model of CAC in cytosolic opened conformation (c-state), L14, G17, G21, V25, P78, V82, M85, C89, F93, A276, A279, C283, F287 are located in the 1st (H1), 2nd (H2) and 6th (H6) transmembrane α-helices and exposed in the central cavity, forming a hydrophobic half shell. These residues have been substituted with A (or G) and in some cases with M. Mutants have been assayed for transport activity measured as [(3)H]carnitine/carnitine antiport in proteoliposomes. With the exception of G17A and G21M, mutants exhibited activity from 20% to 100% of WT. Among the active mutants only G21A, V25M, P78A and P78M showed Vmax lower than half and/or Km more than two fold respect to WT. Acylcarnitines competitively inhibited carnitine antiport. The extent of inhibition of the mutants by acylcarnitines with acyl chain length of 2, 4, 8, 12, 14 and 16 has been compared with the WT. V25A, P78A, P78M and A279G showed reduced extent of inhibition by all the acylcarnitines; V25M showed reduced inhibition by shorter acylcarnitines; V82A, V82M, M85A, C89A and A276G showed reduced inhibition by longer acylcarnitines, respect to WT. C283A showed increased extent of inhibition by acylcarnitines. Variations of Ki of mutants for acylcarnitines reflected variations of the inhibition profiles. The data demonstrated that V25, P78, V82, M85 and C89 are involved in the acyl chain binding to the CAC in c-state.  相似文献   

16.
Acr2p detoxifies arsenate by reduction to arsenite in Saccharomyces cerevisiae. This reductase has been shown to require glutathione and glutaredoxin, suggesting that thiol chemistry might be involved in the reaction mechanism. Acr2p has a HC(X)(5)R motif, the signature sequence of the phosphate binding loop of the dual-specific and protein-tyrosine phosphatase family. In Acr2p these are residues His-75, Cys-76, and Arg-82, respectively. Acr2p has another sequence, (118)HCR, that is absent in phosphatases. Acr2p also has a third cysteine residue at position 106. Each of these cysteine residues was changed individually to serine residues, whereas the histidine and arginine residues were altered to alanines. Cells of Escherichia coli heterologously expressing the majority of the mutant ACR2 genes retained wild type resistance to arsenate, and the purified altered Acr2p proteins exhibited normal enzymatic properties. In contrast, cells expressing either the C76S or R82A mutations lost resistance to arsenate, and the purified proteins were inactive. These results suggest that Acr2p utilizes a phosphatase-like Cys(X)(5)Arg motif as the catalytic center to reduce arsenate to arsenite.  相似文献   

17.
Site-directed mutagenesis was used to alter active-site residues of methylamine dehydrogenase (MADH) from Paracoccus denitrificans. Four residues of the beta subunit of MADH which are in close proximity to the tryptophan tryptophylquinone (TTQ) prosthetic group were modified. The crystal structure of MADH reveals that each of these residues participates in hydrogen bonding interactions with other active-site residues, TTQ or water. Relatively conservative mutations which removed the potentially reactive oxygens on the side chains of Thr122, Tyr119, Asp76 and Asp32 each resulted in greatly reduced or undetectable levels of MADH production. The reduction of MADH levels was determined by assays of activity and Western blots of crude extracts with antisera specific for the MADH beta subunit. No activity or cross-reactive protein was detected in extracts of cells expressing D76N, T122A and T122C MADH mutants. Very low levels of active MADH were produced by cells expressing D32N, Y119F, Y119E and Y119K MADH mutants. The Y119F and D32N mutants were purified from cell extracts and found to be significantly less stable than wild-type MADH. Only the T122S MADH mutant was produced at near wild-type levels. Possible roles for these amino acid residues in stabilizing unusual structural features of the MADH beta subunit, protein folding and TTQ biosynthesis are discussed.  相似文献   

18.
Wang X  Kemp RG 《Biochemistry》1999,38(14):4313-4318
The apparent affinity of phosphofructo-1-kinase (PFK) of Escherichia coli for ATP is at least 10 times higher than for other nucleotides. Mutagenesis was directed toward five residues that may interact with ATP: Y41, F76, R77, R82, and R111. Alanine at position 41 or 76 increased the apparent Km by 49- and 62-fold, respectively. Position 41 requires the presence of a large hydrophobic residue and is not restricted to aromatic rings. Tryptophan and, to a lesser extent, phenylalanine could substitute at position 76. None of the mutants at 41 or 76 showed a change in the preference for alternative purines, although F76W used CTP 3 times better than the wild type enzyme. Mutations of R77 suggested that the interaction was hydrophobic with no influence on nucleotide preference. Mutation of R82 to alanine or glutamic acid increased the apparent Km for ATP by more than 20-fold and lowered the kcat/Km with ATP more than 30-fold. However, these mutants had a higher kcat/Km than wild type for both GTP and CTP, reflecting a loss of substrate preference. A loss in preference is seen as well with R111A where the kcat/Km for ATP decreases by only 68%, but the kcat/Km with GTP increases more than 10-fold. Activities with ITP, CTP, and UTP are also higher than with the wild type enzyme. Arginine residues at positions 82 and 111 are important dictators of nucleoside triphosphate preference.  相似文献   

19.
CD3epsilongamma and CD3epsilondelta are noncovalent heterodimers; each consists of Ig-like extracellular domains associated side-to-side via paired terminal beta-strands that are linked to individual subunit membrane proximal stalk segments. CD3epsilon, CD3gamma, and CD3delta stalks contain the RxCxxCxE motif. To investigate the functional importance of a CD3 stalk and terminal beta-strand, we created a CD3gamma double mutant CD3gamma(C82S/C85S) and a CD3gamma beta-strand triple mutant CD3gamma(Q76S/Y78A/Y79A) for use in retroviral transduction of lymphoid progenitors for comparison with CD3gammawt. Although both mutant CD3gamma molecules reduced association with CD3epsilon in CD3epsilongamma heterodimers, CD3gamma(Q76S/Y78A/Y79A) abrogated surface TCR expression whereas CD3gamma(C82S/C85S) did not. Furthermore, CD3gamma(C82S/C85S) rescued thymic development in CD3gamma(-/-) fetal thymic organ culture. However, the numbers of double-positive and single-positive thymocytes after CD3gamma(C82S/C85S) transduction were significantly reduced despite surface pre-TCR and TCR expression comparable to that of CD3gamma(-/-) thymocytes transduced in fetal thymic organ culture with a retrovirus harboring CD3gammawt cDNA. Furthermore, double-negative thymocyte development was perturbed with attenuated double-negative 3/double-negative 4 maturation and altered surface-expressed CD3epsilongamma, as evidenced by the loss of reactivity with CD3gamma N terminus-specific antisera. Single histidine substitution of either CD3gamma stalk cysteine failed to restore CD3epsilongamma association and conformation in transient COS-7 cell transfection studies. Thus, CD3gamma(C82) and CD3gamma(C85) residues likely are either reduced or form a tight intrachain disulfide loop rather than contribute to a metal coordination site in conjunction with CD3epsilon(C80) and CD3epsilon(C83). The implications of these results for CD3epsilongamma and TCR structure and signaling function are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号