首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Loxosceles spider venom usually causes a typical dermonecrotic lesion in bitten patients, but it may also cause systemic effects that may be lethal. Gel filtration on Sephadex G-100 ofLoxosceles gaucho, L. laeta, orL. intermedia spider venoms resulted in three fractions (A, containing higher molecular mass components, B containing intermediate molecular mass components, and C with lower molecular mass components). The dermonecrotic and lethal activities were detected exclusively in fraction A of all three species. Analysis by SDS-PAGE showed that the major protein contained in fraction A has molecular weight approximately 35 kDa inL. gaucho andL. intermedia, but 32 kDa inL. laeta venom. These toxins were isolated from venoms ofL. gaucho, L. laeta, andL. intermedia by SDS-PAGE followed by blotting to PVDF membrane and sequencing. A database search showed a high level of identity between each toxin and a fragment of theL. reclusa (North American spider) toxin. A multiple sequence alignment of theLoxosceles toxins showed many common identical residues in their N-terminal sequences. Identities ranged from 50.0% (L. gaucho andL. reclusa) to 61.1% (L. intermedia andL. reclusa). The purified toxins were also submitted to capillary electrophoresis peptide mapping afterin situ partial hydrolysis of the blotted samples. The results obtained suggest thatL. intermedia protein is more similar toL. laeta toxin thanL. gaucho toxin and revealed a smaller homology betweenL. intermedia andL gaucho. Altogether these findings suggest that the toxins responsible for most important activities of venoms ofLoxosceles species have a molecular mass of 32–35 kDa and are probably homologous proteins.  相似文献   

2.
Brown spider bites are associated with lesions including dermonecrosis, gravitational spreading and a massive inflammatory response, along with systemic problems that may include hematological disturbances and renal failure. The mechanisms by which the venom exerts its noxious effects are currently under investigation. It is known that the venom contains a major toxin (dermonecrotic toxin, biochemically a phospholipase D) that can experimentally induce dermonecrosis, inflammatory response, animal mortality and platelet aggregation. Herein, we describe cloning, heterologous expression, purification and functionality of a novel isoform of the 33 kDa dermonecrotic toxin. Circular dichroism analysis evidenced correct folding for the toxin. The recombinant toxin was recognized by whole venom serum antibodies and by a specific antibody to a previously described dermonecrotic toxin. The identified toxin was found to display phospholipase activity and dermonecrotic properties. Additionally, the toxin caused a massive inflammatory response in rabbit skin dermis, evoked platelet aggregation, increased vascular permeability, caused edema and death in mice. These characteristics in combination with functional studies for other dermonecrotic toxins illustrate that a family of dermonecrotic toxins exists, and includes a novel member with high activity that may be useful for future structural and functional studies.  相似文献   

3.
Loxosceles spider venom usually causes a typical dermonecrotic lesion in bitten patients, but it may also cause systemic effects that may be lethal. Gel filtration on Sephadex G-100 ofLoxosceles gaucho, L. laeta, orL. intermedia spider venoms resulted in three fractions (A, containing higher molecular mass components, B containing intermediate molecular mass components, and C with lower molecular mass components). The dermonecrotic and lethal activities were detected exclusively in fraction A of all three species. Analysis by SDS-PAGE showed that the major protein contained in fraction A has molecular weight approximately 35 kDa inL. gaucho andL. intermedia, but 32 kDa inL. laeta venom. These toxins were isolated from venoms ofL. gaucho, L. laeta, andL. intermedia by SDS-PAGE followed by blotting to PVDF membrane and sequencing. A database search showed a high level of identity between each toxin and a fragment of theL. reclusa (North American spider) toxin. A multiple sequence alignment of theLoxosceles toxins showed many common identical residues in their N-terminal sequences. Identities ranged from 50.0% (L. gaucho andL. reclusa) to 61.1% (L. intermedia andL. reclusa). The purified toxins were also submitted to capillary electrophoresis peptide mapping afterin situ partial hydrolysis of the blotted samples. The results obtained suggest thatL. intermedia protein is more similar toL. laeta toxin thanL. gaucho toxin and revealed a smaller homology betweenL. intermedia andL gaucho. Altogether these findings suggest that the toxins responsible for most important activities of venoms ofLoxosceles species have a molecular mass of 32–35 kDa and are probably homologous proteins.  相似文献   

4.
The most common manifestation of Loxosceles spider envenoming is a dermonecrotic lesion at the bite site. Dermonecrotic toxins from Loxosceles gaucho venom were purified and characterized by mass spectrometry (capillary liquid chromatography followed by mass spectrometry detection). Two components were purified: a major one of 31,444 Da, called loxnecrogin A, and a minor one of 31,626 Da, called loxnecrogin B, being probably two isoforms of the toxin. The N-terminal sequence of loxnecrogin A showed similarity with N termini of other sphingomyelinolytic dermonecrotic toxins isolated from venoms of different Loxosceles species. The internal sequences did not present any statistically significant hits in sequence databases searches. However, loxnecrogin A partial sequence showed high similarity to regions of L. intermedia LiD1 recombinant protein sequence, recently described in the literature but not yet deposited in databanks.  相似文献   

5.
Brown spiders have a worldwide distribution, and their venom has a complex composition containing many different molecules. Herein, we report the existence of a family of astacin-like metalloprotease toxins in Loxosceles intermedia venom, as well as in the venom of different species of Loxosceles. Using a cDNA library from the L. intermedia venom gland, we cloned two novel cDNAs encoding astacin-like metalloprotease toxins, LALP2 and LALP3. Using an anti-serum against the previously described astacin-like toxin in L. intermedia venom (LALP1), we detected the presence of immunologically-related toxins in the venoms of L. intermedia, Loxosceles laeta, and Loxosceles gaucho. Zymographic experiments showed gelatinolytic activity of crude venoms of L. intermedia, L. laeta, and L. gaucho (which could be inhibited by the divalent metal chelator 1,10-phenanthroline) at electrophoretic mobilities identical to those reported for immunological cross-reactivity. Moreover, mRNAs extracted from L. laeta and L. gaucho venom glands were screened for astacin-like metalloproteases, and cDNAs obtained using LALP1-specific primers were sequenced, and their deduced amino acid sequences confirmed they were members of the astacin family with the family signatures (HEXXHXXGXXHE and MXY), LALP4 and LALP5, respectively. Sequence comparison of deduced amino acid sequences revealed that LALP2, LALP3, LALP4, and LALP5 are related to the astacin family. This study identified the existence of gene family of astacin-like toxins in the venoms of brown spiders and raises the possibility that these molecules are involved in the deleterious effects triggered by the venom.  相似文献   

6.
Brown spider bites are associated with lesions including dermonecrosis, gravitational spreading and a massive inflammatory response, along with systemic problems that may include hematological disturbances and renal failure. The mechanisms by which the venom exerts its noxious effects are currently under investigation. It is known that the venom contains a major toxin (dermonecrotic toxin, biochemically a phospholipase D) that can experimentally induce dermonecrosis, inflammatory response, animal mortality and platelet aggregation. Herein, we describe cloning, heterologous expression, purification and functionality of a novel isoform of the 33 kDa dermonecrotic toxin. Circular dichroism analysis evidenced correct folding for the toxin. The recombinant toxin was recognized by whole venom serum antibodies and by a specific antibody to a previously described dermonecrotic toxin. The identified toxin was found to display phospholipase activity and dermonecrotic properties. Additionally, the toxin caused a massive inflammatory response in rabbit skin dermis, evoked platelet aggregation, increased vascular permeability, caused edema and death in mice. These characteristics in combination with functional studies for other dermonecrotic toxins illustrate that a family of dermonecrotic toxins exists, and includes a novel member with high activity that may be useful for future structural and functional studies.  相似文献   

7.
Phospholipases D (PLDs) are principally responsible for the local and systemic effects of Loxosceles envenomation including dermonecrosis and hemolysis. Despite their clinical relevance in loxoscelism, to date, only the SMase I from Loxosceles laeta, a class I member, has been structurally characterized. The crystal structure of a class II member from Loxosceles intermedia venom has been determined at 1.7 Å resolution. Structural comparison to the class I member showed that the presence of an additional disulphide bridge which links the catalytic loop to the flexible loop significantly changes the volume and shape of the catalytic cleft. An examination of the crystal structures of PLD homologues in the presence of low molecular weight compounds at their active sites suggests the existence of a ligand-dependent rotamer conformation of the highly conserved residue Trp230 (equivalent to Trp192 in the glycerophosphodiester phosphodiesterase from Thermus thermophofilus, PDB code: 1VD6) indicating its role in substrate binding in both enzymes. Sequence and structural analyses suggest that the reduced sphingomyelinase activity observed in some class IIb PLDs is probably due to point mutations which lead to a different substrate preference.  相似文献   

8.
Phospholipase D (PLD) plays various roles in important biological processes and physiological functions, including cell signaling. Streptomyces PLDs show significant sequence similarity and belong to the PLD superfamily containing two catalytic HKD motifs. These PLDs have conserved catalytic regions and are among the smallest PLD enzymes. Therefore, Streptomyces PLDs are thought to be suitable models for studying the reaction mechanism among PLDs from other sources. Furthermore, Streptomyces PLDs present advantages related to their broad substrate specificity and ease of enzyme preparation. Moreover, the tertiary structure of PLD has been elucidated only for PLD from Streptomyces sp. PMF. This article presents a review of recently reported studies of the mechanism of the catalytic reaction, substrate recognition, substrate specificity and stability of Streptomyces PLD using various protein engineering methods and surface plasmon resonance analysis.  相似文献   

9.
The bite of spiders of the genus Loxosceles can induce a variety of biological effects, including dermonecrosis and complement-dependent haemolysis. The aim of this study was to generate recombinant proteins from the Loxosceles spider gland to facilitate structural and functional studies in the mechanisms of loxoscelism. Using "Expressed Sequencing Tag" strategy of aleatory clones from, L. laeta venom gland cDNA library we have identified clones containing inserts coding for proteins with significant similarity with previously obtained N-terminus of sphingomyelinases from Loxosceles intermedia venom [1]. Clone H17 was expressed as a fusion protein containing a 6x His-tag at its N-terminus and yielded a 33kDa protein. The recombinant protein was endowed with all biological properties ascribed to the whole L. laeta venom and sphingomyelinases from L. intermedia, including dermonecrotic and complement-dependent haemolytic activities. Antiserum raised against the recombinant protein recognised a 32-kDa protein in crude L. laeta venom and was able to block the dermonecrotic reaction caused by whole L. laeta venom. This study demonstrates conclusively that the sphingomyelinase activity in the whole venom is responsible for the major pathological effects of Loxosceles spider envenomation.  相似文献   

10.

Background

Accidents caused by Loxosceles spider may cause severe systemic reactions, including acute kidney injury (AKI). There are few experimental studies assessing Loxosceles venom effects on kidney function in vivo.

Methodology/Principal Findings

In order to test Loxosceles gaucho venom (LV) nephrotoxicity and to assess some of the possible mechanisms of renal injury, rats were studied up to 60 minutes after LV 0.24 mg/kg or saline IV injection (control). LV caused a sharp and significant drop in glomerular filtration rate, renal blood flow and urinary output and increased renal vascular resistance, without changing blood pressure. Venom infusion increased significantly serum creatine kinase and aspartate aminotransferase. In the LV group renal histology analysis found acute epithelial tubular cells degenerative changes, presence of cell debris and detached epithelial cells in tubular lumen without glomerular or vascular changes. Immunohistochemistry disclosed renal deposition of myoglobin and hemoglobin. LV did not cause injury to a suspension of fresh proximal tubules isolated from rats.

Conclusions/Significance

Loxosceles gaucho venom injection caused early AKI, which occurred without blood pressure variation. Changes in glomerular function occurred likely due to renal vasoconstriction and rhabdomyolysis. Direct nephrotoxicity could not be demonstrated in vitro. The development of a consistent model of Loxosceles venom-induced AKI and a better understanding of the mechanisms involved in the renal injury may allow more efficient ways to prevent or attenuate the systemic injury after Loxosceles bite.  相似文献   

11.
Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using 31P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.  相似文献   

12.
Brown spider (Genus Loxosceles) bites are normally associated with necrotic skin degeneration, gravitational spreading, massive inflammatory response at injured region, platelet aggregation causing thrombocytopenia and renal disturbances. Brown spider venom has a complex composition containing many different toxins, of which a well-studied component is the dermonecrotic toxin. This toxin alone may produce necrotic lesions, inflammatory response and platelet aggregation. Biochemically, dermonecrotic toxin belongs to a family of toxins with 30-35 kDa characterized as sphingomyelinase-D. Here, employing a cDNA library of Loxosceles intermedia venom gland, we cloned and expressed two recombinant isoforms of the dermonecrotic toxin LiRecDT2 (1062 bp cDNA) and LiRecDT3 (1007 bp cDNA) that encode for signal peptides and complete mature proteins. Phylogenetic tree analysis revealed a structural relationship for these toxins compared to other members of family. Recombinant molecules were expressed as N-terminal His-tag fusion proteins in Escherichia coli and were purified to homogeneity from cell lysates by Ni(2+) chelating chromatography, resulting in proteins of 33.8 kDa for LiRecDT2 and 34.0 kDa for LiRecDT3. Additional evidence for related toxins containing sequence/epitopes identity comes from antigenic cross-reactivity using antibodies against crude venom toxins and antibodies raised with a purified dermonecrotic toxin. Recombinant toxins showed differential functionality in rabbits: LiRecDT2 caused a macroscopic lesion with gravitational spreading upon intradermal injection, while LiRecDT3 evoked transient swelling and erythema upon injection site. Light microscopic analysis of skin biopsies revealed edema, a collection of inflammatory cells in and around blood vessels and a proteinaceous network at the dermis. Moreover, differential functionality for recombinant toxins was also demonstrated by a high sphingomyelinase activity for LiRecDT2 and low activity for LiRecDT3 as well as greater in vitro platelet aggregation and blood vessel permeability induced by LiRecDT2 and residual activity for LiRecDT3. Cloning and expression of two recombinant dermonecrotic toxins demonstrate an intraspecific family of homologous toxins that act in synergism for deleterious activities of the venom and open possibilities for biotechnological applications for recombinant toxins as research tools for understanding the inflammatory response, vascular integrity and platelet aggregation modulators.  相似文献   

13.
A facile and quantitative assay for measuring the activity of sphingomyelinase D in recluse spider venom has been developed using L-α-[palmitoyl-1-14C]lysophosphatidylcholine as substrate. This assay avoids the problem of substrate insolubility that occurs when sphingomyelin and other lipids are used as subtrates. This assay has been employed in gel filtration and isoelectric focusing isolation techniques to purify sphingomyelinase D from spider venom. The purified sphingomyelinase exhibits four active enzyme forms in isoelectric focusing with pI values of 8.7, 8.4., 8.2, and 7.8. Each active form when examined in SDS-polyacrylamide gel electrophoresis gave an estimated molecular weight of 32 000. The four active enzyme forms were immunologically cross-reactive with each other as demonstrated with radioimmune assays using an antiserum developed to one of the active forms. Each active form hydrolysed sphingomyelin to release choline and produce N-acylsphingosine phosphate. One of the active enzyme forms was characterized further in dermonecrosis and platelet aggregation measurements. This purified sphingomyelinase D was identified as a poisonous toxin that can develop the typical dermonecrotic spider lesion when injected into experimental animals at levels expected to be delivered in a normal bite. Furthermore, the purified toxin acts to aggregate human blood platelets. The toxin-induced platelet aggregation has been related to serotonin release as aggregation occurs, and it has been shown to be inhibited by EDTA over the range of 0.6 to 3.0 mM EDTA. It is suggested that spider-induced dermonecrosis could result in part from platelet aggregation at and near the site of envenomation.  相似文献   

14.
Envenomation by Loxosceles spider is characterized by the development of dermonecrosis. In previous studies, we have demonstrated that increased expression/secretion of matrix metalloproteinases 2 and 9, induced by Loxosceles intermedia venom Class 2 SMases D (the main toxin in the spider venom), contribute to the development of cutaneous loxoscelism. In the present study we show that the more potent venom containing the Class 1 SMase D from Loxosceles laeta, in addition to increasing the expression/secretion of MMP2 and MMP9, also stimulates the expression of MMP7 (Matrilysin-1), which was associated with keratinocyte cell death. Tetracycline, a matrix metalloproteinase inhibitor, prevented cell death and reduced MMPs expression. Considering that L. laeta venom is more potent at inducing dermonecrosis than L. intermedia venom, our results suggest that MMP7 may play an important role in the severity of dermonecrosis induced by L. laeta spider venom SMase D. In addition, the inhibition of MMPs by e.g. tetracyclines may be considered for the treatment of the cutaneous loxoscelism.  相似文献   

15.
Envenoming with brown spiders (Loxosceles genus) is common throughout the world. Cutaneous symptoms following spider bite accidents include dermonecrosis, erythema, itching and pain. In some cases, accidents can cause hypersensibility or even allergic reactions. These responses could be associated with histaminergic events, such as an increase in vascular permeability and vasodilatation. A protein that may be related to the effects of spider venom was identified from a previously obtained cDNA library of the L. intermedia venom gland. The amino acid sequence of this protein is homologous to proteins from the TCTP (translationally-controlled tumor protein) family, which are extracellular histamine-releasing factors (HRF) that are associated with the allergic reactions to parasites. Herein, we described the cloning, heterologous expression, purification and functional characterization of a novel member of the TCTP family from the Loxosceles intermedia venom gland. This recombinant protein, named LiRecTCTP, causes edema, enhances vascular permeability and is likely related to the inflammatory activity of the venom. Moreover, LiRecTCTP presents an immunological relationship with mammalian TCTPs.  相似文献   

16.

Background

The spider family Sicariidae includes two genera, Sicarius and Loxosceles. Bites by Sicarius are uncommon in humans and, in Brazil, a single report is known of a 17-year old man bitten by a Sicarius species that developed a necrotic lesion similar to that caused by Loxosceles. Envenomation by Loxosceles spiders can result in dermonecrosis and severe ulceration. Sicarius and Loxosceles spider venoms share a common characteristic, i.e., the presence of Sphingomyelinases D (SMase D). We have previously shown that Loxosceles SMase D is the enzyme responsible for the main pathological effects of the venom. Recently, it was demonstrated that Sicarius species from Africa, like Loxosceles spiders from the Americas, present high venom SMase D activity. However, despite the presence of SMase D like proteins in venoms of several New World Sicarius species, they had reduced or no detectable SMase D activity. In order to contribute to a better understanding about the toxicity of New World Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from the Brazilian Sicarius ornatus spider and compare these with venoms from Loxosceles species of medical importance in Brazil.

Methodology/Principal Findings

SDS-PAGE analysis showed variations in the composition of Loxosceles spp. and Sicarius ornatus venoms. Differences in the electrophoretic profiles of male and female venoms were also observed, indicating a possible intraspecific variation in the composition of the venom of Sicarius spider. The major component in all tested venoms had a Mr of 32–35 kDa, which was recognized by antiserum raised against Loxosceles SMases D. Moreover, male and female Sicarius ornatus spiders'' venoms were able to hydrolyze sphingomyelin, thus showing an enzymatic activity similar to that determined for Loxosceles venoms. Sicarius ornatus venoms, as well as Loxosceles venoms, were able to render erythrocytes susceptible to lysis by autologous serum and to induce a significant loss of human keratinocyte cell viability; the female Sicarius ornatus venom was more efficient than male.

Conclusion

We show here, for the first time, that the Brazilian Sicarius ornatus spider contains active Sphingomyelinase D and is able to cause haemolysis and keratinocyte cell death similar to the South American Loxosceles species, harmful effects that are associated with the presence of active SMases D. These results may suggest that envenomation by this Sicarius spider has the potential to cause similar pathological events as that caused by Loxosceles envenomation. Our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms composition may play a role in the toxic potential of the New World Sicarius venoms species.  相似文献   

17.
Brown spider dermonecrotic toxins (phospholipases-D) are the most well-characterized biochemical constituents of Loxosceles spp. venom. Recombinant forms are capable of reproducing most cutaneous and systemic manifestations such as dermonecrotic lesions, hematological disorders, and renal failure. There is currently no direct confirmation for a relationship between dermonecrosis and inflammation induced by dermonecrotic toxins and their enzymatic activity. We modified a toxin isoform by site-directed mutagenesis to determine if phospholipase-D activity is directly related to these biological effects. The mutated toxin contains an alanine substitution for a histidine residue at position 12 (in the conserved catalytic domain of Loxosceles intermedia Recombinant Dermonecrotic Toxin - LiRecDT1). LiRecDT1H12A sphingomyelinase activity was drastically reduced, despite the fact that circular dichroism analysis demonstrated similar spectra for both toxin isoforms, confirming that the mutation did not change general secondary structures of the molecule or its stability. Antisera against whole venom and LiRecDT1 showed cross-reactivity to both recombinant toxins by ELISA and immunoblotting. Dermonecrosis was abolished by the mutation, and rabbit skin revealed a decreased inflammatory response to LiRecDT1H12A compared to LiRecDT1. Residual phospholipase activity was observed with increasing concentrations of LiRecDT1H12A by dermonecrosis and fluorometric measurement in vitro. Lipid arrays showed that the mutated toxin has an affinity for the same lipids LiRecDT1, and both toxins were detected on RAEC cell surfaces. Data from in vitro choline release and HPTLC analyses of LiRecDT1-treated purified phospholipids and RAEC membrane detergent-extracts corroborate with the morphological changes. These data suggest a phospholipase-D dependent mechanism of toxicity, which has no substrate specificity and thus utilizes a broad range of bioactive lipids.  相似文献   

18.
A facile and quantitative assay for measuring the activity of sphingomyelinase D in recluse spider venom has been developed using L-alpha-[palmitoyl-1-14C]lysophosphatidylcholine as substrate. This assay avoids the problem of substrate insolubility that occurs when sphingomyelin and other insoluble lipids are used as substrates. This assay has been employed in gel filtration and isoelectric focusing isolation techniques to purify sphingomyelinase D from spider venom. The purified sphingomyelinase exhibits four active enzyme forms in isoelectric focusing with pI values of 8.7, 8.4, 8.2, and 7.8. Each active form when examined in SDS-polyacrylamide gel electrophoresis gave an estimated molecular weight of 32 000. The four active enzyme forms were immunologically cross-reactive with each other as demonstrated with radioimmune assays using an antiserum developed to one of the active forms. Each active form hydrolysed sphingomyelin to release choline and produce N-acylsphingosine phosphate. One of the active enzyme forms was characterized further in dermonecrosis and platelet aggregation measurements. This purified sphingomyelinase D was identified as a poisonous toxin that can developed typical dermonecrotic spider lesions when injected into experimental animals at levels expected to be delivered in a normal bite. Furthermore, the purified toxin acts to aggregate human blood platelets. The toxin-induced platelet aggregation has been related to serotonin release as aggregation occurs, and it has been shown to be inhibited by EDTA over the range of 0.6 yo 3.0 mM EDTA. It is suggested that spider-induced dermonecrosis could result in part from platelet aggregation at and near the site of envenomation.  相似文献   

19.
A novel non-hemorrhagic metalloproteinase, AHPM, was purified from the venom of Agkistrodon halys pallas by a combination of ion-exchange and gel filtration chromatography. AHPM is a dimeric glycoprotein with multiple pIs around pH 7.9 and has a molecular mass of 110 kDa with two blocked N-terminuses. Partial sequence of AHPM obtained by LC-MS/MS analysis together with its dimeric nature reveals that it is a P-IIIc snake venom metalloproteinase composed of metalloproteinase, disintegrin-like and cysteine-rich domains. AHPM has a conserved DECD sequence in the disintegrin-like domain. AHPM hydrolyzes casein and fibrinogen and also dissolves fibrin clots and the proteolytic activity is abolished by EDTA, but not by PMSF, suggesting that it is a metalloproteinase. The protease hydrolyzes rapidly the Aα-chain of fibrinogen followed by the Bβ-chain and does not cleave the γ-chain. AHPM contains endogenous Zn2+ and Ca2+ ions at a molar ratio of 1:1.9 and 1:4.2, respectively, and Zn2+ ions are essential for its proteolytic activity. AHPM inhibits collagen-and ADP-induced platelet aggregation with half maximal inhibitory concentrations of 200 ± 8 nM and 280 ± 10 nM, respectively. EDTA markedly attenuates the inhibition of ADP-induced platelet aggregation by AHPM, indicating that the fibrinogenolytic activity of AHPM is involved in its inhibition of ADP-induced platelet aggregation. AHPM is devoid of hemorrhagic activity when injected (up to 30 μg) subcutaneously into mice. AHPM is so far identified as first non-hemorrhagic P-IIIc SVMP which has both fibrinolytic and platelet aggregation-inhibition activities. The bifunctional enzyme may have a potential clinical application as a thrombolytic agent.  相似文献   

20.
Spider venom GDPD-like phospholipases D (SicTox) have been identified to be one of the major toxins in recluse spider venom. They are divided into two major clades: the α clade and the β clade. Most α clade toxins present high activity against lipids with choline head groups such as sphingomyelin, while activities in β clade toxins vary and include preference for substrates containing ethanolamine headgroups (Sicarius terrosus, St_βIB1). A structural comparison of available structures of phospholipases D (PLDs) reveals a conserved aromatic cage in the α clade. To test the potential influence of the aromatic cage on membrane-lipid specificity we performed molecular dynamics (MD) simulations of the binding of several PLDs onto lipid bilayers containing choline headgroups; two SicTox from the α clade, Loxosceles intermedia αIA1 (Li_αIA) and Loxosceles laeta αIII1 (Ll_αIII1), and one from the β clade, St_βIB1. The simulation results reveal that the aromatic cage captures a choline-headgroup and suggest that the cage plays a major role in lipid specificity. We also simulated an engineered St_βIB1, where we introduced the aromatic cage, and this led to binding with choline-containing lipids. Moreover, a multiple sequence alignment revealed the conservation of the aromatic cage among the α clade PLDs. Here, we confirmed that the i-face of α and β clade PLDs is involved in their binding to choline and ethanolamine-containing bilayers, respectively. Furthermore, our results suggest a major role in choline lipid recognition of the aromatic cage of the α clade PLDs. The MD simulation results are supported by in vitro liposome binding assay experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号