首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equilibrium and kinetics studies of an 82 kDa large monomeric Escherichia coli protein Malate Synthase G (MSG) was investigated by far and near-UV CD, intrinsic tryptophan fluorescence and extrinsic fluorescence spectroscopy. We find that despite of its large size, folding is reversible, in vitro. Equilibrium unfolding process of MSG exhibited three-state transition thus, indicating the presence of at least a stable equilibrium intermediate. Thermodynamic parameters suggest this intermediate resembles the unfolded state. However, the equilibrium intermediate exhibits pronounced secondary structure as measured by far-UV CD, partial tertiary structure as delineated by near-UV CD, compactness (m value) and exposed hydrophobic surface area as assessed by ANS binding, typically depicting a molten globule state. The stopped-flow kinetic data provide clear evidence for the presence of a burst phase during the refolding pathway due to the formation of an early Intermediate, within the dead time of the instrument. Refolding from 4 M to various lower concentrations until 0.4 M of GdnHCl follow biphasic kinetics at lower concentrations of GdnHCl (<0.8 M), whereas monophasic kinetics at concentrations above 1.5 M. Also, rollover in the refolding and unfolding limbs of chevron plot verifies the presence of a fast kinetic intermediate at lower concentration of GdnHCl. Based upon the above observations we hereby propose the folding pathway of a large multi-domain protein Malate Synthase G.  相似文献   

2.
Spontaneous formation of isoaspartyl residues (isoAsp) disrupts the structure and function of many normal proteins. Protein isoaspartyl methyltransferase (PIMT) reverts many isoAsp residues to aspartate as a protein repair process. We have determined the crystal structure of human protein isoaspartyl methyltransferase (HPIMT) complexed with adenosyl homocysteine (AdoHcy) to 1.6-A resolution. The core structure has a nucleotide binding domain motif, which is structurally homologous with the N-terminal domain of the bacterial Thermotoga maritima PIMT. Highly conserved residues in PIMTs among different phyla are placed at positions critical to AdoHcy binding and orienting the isoAsp residue substrate for methylation. The AdoHcy is completely enclosed within the HPIMT and a conformational change must occur to allow exchange with adenosyl methionine (AdoMet). An ordered sequential enzyme mechanism is supported because C-terminal residues involved with AdoHcy binding also form the isoAsp peptide binding site, and a change of conformation to allow AdoHcy to escape would preclude peptide binding. Modeling experiments indicated isoAsp groups observed in some known protein crystal structures could bind to the HPIMT active site.  相似文献   

3.
BackgroundIsomerization of aspartate to isoaspartate (isoAsp) on aging causes protein damage and malfunction. Protein-L-isoaspartyl methyltransferase (PIMT) performs a neuroprotective role by repairing such residues. A hexapeptide, Val-Tyr-Pro-(isoAsp)-His-Ala (VA6), a substrate of PIMT, is shown to form fibrils, while the normal Asp-containing peptide does not. Considering the role of PIMT against epileptic seizure, the combined effect of PIMT and two antiepileptic drugs (AEDs) (valproic acid and stiripentol) was investigated for anti-fibrillation activity.MethodsStructural/functional modulations due to the binding of AEDs to PIMT were investigated using biophysical techniques. Thioflavin T (ThT) fluorescence assay and microscopic methods were employed to study fibril formation by VA6. In vitro experiments with PC12 cells were carried out with PIMT/AEDs.ResultsThT assay indicated reduction of fibrillation of VA6 by PIMT. AEDs stabilize PIMT, bind close to the cofactor binding site, possibly exerting allosteric effect, increase the enzymatic activity, and anti-fibrillation efficacy. Furthermore, Aβ42, implicated in Alzheimer's disease, undergoes β-sheet to α-helix transition in presence of PIMT. Studies with PC12 derived neurons showed that PIMT and PIMT/AEDs exerted neuroprotective effect against anti-NGF induced neurotoxicity. This was further validated against neurotoxicity induced by Aβ42 in primary rat cortical neurons.ConclusionsThe study provides a new perspective to the role isoAsp in protein fibrillation, PIMT in its prevention and AEDs in enhancing the activity of the enzyme.General significanceIsoAsp, with an additional C atom in the main-chain of polypeptide chain, may make it more susceptible to fibrillation. PIMT alone, or in association with AEDs prevents this.  相似文献   

4.
Acid-induced unfolding of the tetrameric glucose/xylose isomerase (GXI) from Streptomyces sp. NCIM 2730 has been investigated using intrinsic fluorescence, fluorescence quenching, second derivative spectroscopy, hydrophobic dye (1-anilino-8-naphthalene-sulfonate) binding and CD techniques. The pH dependence of tryptophanyl fluorescence of GXI at different temperatures indicated the presence of two stable intermediates at pH 5.0 and pH 3.0. The pH 3.2 intermediate was a dimer and exhibited molten globule-like characteristics, such as the presence of native-like secondary structure, loss of tertiary structure, increased exposure of hydrophobic pockets, altered microenvironment of tyrosine residues and increased accessibility to quenching by acrylamide. Fluorescence and CD studies on GXI at pH 5.0 suggested the involvement of a partially folded intermediate state in the native to molten globule state transition. The partially folded intermediate state retained considerable secondary and tertiary structure compared to the molten globule state. This state was characterized by its hydrophobic dye binding capacity, which is smaller than the molten globule state, but was greater than that of the native state. This state shared the dimeric status of the molten globule state but was prone to aggregate formation as evident by the Rayleigh light scattering studies. Based on these results, the unfolding pathway of GXI can be illustrated as: N-->PFI-->MG-->U; where N is the native state at pH 7.5; PFI is the partially folded intermediate state at pH 5.0; MG is the molten globule state at pH 3.2 and U is the monomeric unfolded state of GXI obtained in the presence of 6 M GdnHCl. Our results demonstrate the existence of a partially folded state and molten globule state on the unfolding pathway of a multimeric alpha/beta barrel protein.  相似文献   

5.
The globular 22-kDa protein UMP/CMP from Dictyostelium discoideum (UmpK) belongs to the family of nucleoside monophosphate (NMP) kinases. These enzymes not only show high sequence and structure similarities but also share the α/β-fold, a very common protein topology. We investigated the protein folding mechanism of UmpK as a representative for this ubiquitous enzyme class. Equilibrium stability towards urea and the unfolding and refolding kinetics were studied by means of fluorescence and far-UV CD spectroscopy. Although the unfolding can be described by a two-state process, folding kinetics are rather complex with four refolding phases that can be resolved and an additional burst phase. Moreover, two of these phases exhibit a pronounced rollover in the refolding limb that cannot be explained by aggregation. Whilst secondary structure formation is not observed in the burst phase reaction, folding to the native structure is strongly influenced by the slowest phase, since 30% of the α-helical CD signal is restored therein. This process can be assigned to proline isomerization and is strongly accelerated by the Escherichia coli peptidyl-prolyl isomerase trigger factor. The analysis of our single-mixing and double-mixing experiments suggests the occurrence of an off-pathway intermediate and an unproductive collapsed structure, which appear to be rate limiting for the folding of UmpK.  相似文献   

6.
Human placental S-adenosylhomocysteine (AdoHcy) hydrolase was subjected to limited papain digestion. The multiple cleavage sites in the enzyme were identified to be Lys94-Ala95, Tyr100-Ala101, Glu243-Ile244, Met367-Ala368, Gln369-Ile370, and Gly382-Val383. Despite multiple cleavage sites in the backbone of the protein, the digested enzyme was able to maintain its quaternary structure and retain its full catalytic activity. The enzyme activity of the partially digested AdoHcy hydrolase was essentially identical to that of the native enzyme at several pH values. The thermal stabilities of the native and partially digested enzymes were only slightly different at all temperatures tested. The stability of both native and partially digested enzymes were examined in guanidine hydrochloride and equilibrium unfolding transitions were monitored by CD spectroscopy and tryptophan fluorescence spectroscopy. The results of these experiments can be summarized as follows: (1) CD spectroscopic analysis showed that the overall secondary and tertiary structures of the partially digested enzyme are essentially identical with those of the native enzyme; and (2) tryptophan fluorescence spectroscopic analysis indicated that there are small differences in the environments of surface-exposed tryptophan residues between the partially digested enzyme and the native enzyme under unfolding conditions. The differences in the free energy of unfolding, delta(delta Gu) [delta Gu(native)-delta Gu(digested)], is approximately 1.3 kcal/mol. When NAD+ was removed from the partially digested enzyme, the secondary and tertiary structures of the apo form of the digested AdoHcy hydrolase were completely lost and the enzymatic activity could not be recovered by incubation with excess NAD+. These results suggest that AdoHcy hydrolase exists as a very compact enzyme with extensive intramolecular bonding, which contributes significantly to the overall global protein stabilization. Identification of the surface-exposed peptide bonds, which are susceptible to papain digestion, has provided some constraints on the spatial orientations of subunits of the enzyme. This information, in turn, has provided supplemental data for X-ray crystallographic studies currently ongoing in our laboratories.  相似文献   

7.
We have investigated the differential stability of the two domains of papain, a broad specific cysteine protease, which is one of the most commonly used enzyme in various industries. The denaturant induced equilibrium unfolding of this enzyme has been investigated by different spectroscopic techniques. By site specific fluorescent labeling of one of the domain, we observed that during the unfolding process, L domain unfolds first and the R domain unfolds at a later stage. Spectroscopic studies reveal a biphasic unfolding transition, suggesting the presence of an intermediate during the unfolding process. The intermediate is observed between 1.5 and 2.5 M GuHCl and between 3 and 5 M in the case of urea induced unfolding. The unfolding process for both native to intermediate and intermediate to unfolded species is reversible in the case of urea unfolding, with a ΔG of ?2.4 and ?5.5 kcal/mole respectively where as for GuHCl unfolding only native to intermediate species is reversible indicating the predominance of hydrophobic interactions in the stability of the molecule.  相似文献   

8.
The flavin mononucleotide (FMN) cofactor in Desulfovibrio desulfuricans flavodoxin stays associated with the polypeptide upon guanidine hydrochloride (GuHCl) induced unfolding. Using isothermal titration calorimetry (ITC), we determined the affinity of FMN for the flavodoxin polypeptide as a function of both urea and GuHCl concentrations (pH 7, 25 degrees C). The FMN affinity for folded and GuHCl-unfolded flavodoxin differs 10-fold, which is in agreement with the difference in thermodynamic stability between the apo- and holo-forms. In contrast, the urea-unfolded protein does not interact with FMN and equilibrium unfolding of holo-flavodoxin in urea results in FMN dissociation prior to polypeptide unfolding. ANS-binding, near-UV circular dichroism (CD), acrylamide quenching and FMN-emission experiments reveal the presence of native-like intermediates, not detected by far-UV CD and aromatic fluorescence detection methods, in low concentrations of both denaturants. Time-resolved experiments show that FMN binding is fastest at GuHCl concentrations where the native-like intermediate species is populated.  相似文献   

9.
The equilibrium unfolding process of Photobacterium leiognathi Cu,Zn superoxide dismutase has been quantitatively monitored through circular dichroism (CD) and fluorescence spectroscopy, upon increasing the guanidinium hydrochloride concentration. The study has been undertaken for both the holo- and the copper-free derivative to work out the role of copper in protein stability. In both cases the unfolding was reversible. The denaturation curve derived from CD and fluorescence spectroscopy was not coincident, suggesting that the denaturation process occurs through a three-state model with formation of an intermediate monomeric species. The occurrence of an intermediate species has been unambiguously demonstrated following CD and steady-state fluorescence spectra of the enzyme at various concentrations in presence of a fixed amounts of guanidinium hydrochloride.  相似文献   

10.
The S100 proteins comprise 25 calcium-signalling members of the EF-hand protein family. Unlike typical EF-hand signalling proteins such as calmodulin and troponin-C, the S100 proteins are dimeric, forming both homo- and heterodimers in vivo. One member of this family, S100B, is a homodimeric protein shown to control the assembly of several cytoskeletal proteins and regulate phosphorylation events in a calcium-sensitive manner. Calcium binding to S100B causes a conformational change involving movement of helix III in the second calcium-binding site (EF2) that exposes a hydrophobic surface enabling interactions with other proteins such as tubulin and Ndr kinase. In several S100 proteins, calcium binding also stabilizes dimerization compared to the calcium-free states. In this work, we have examined the guanidine hydrochloride (GuHCl)-induced unfolding of dimeric calcium-free S100B. A series of tryptophan substitutions near the dimer interface and the EF2 calcium-binding site were studied by fluorescence spectroscopy and showed biphasic unfolding curves. The presence of a plateau near 1.5 M GuHCl showed the presence of an intermediate that had a greater exposed hydrophobic surface area compared to the native dimer based on increased 4,4-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid fluorescence. Furthermore, 1H-15N heteronuclear single quantum coherence analyses as a function of GuHCl showed significant chemical shift changes in regions near the EF1 calcium-binding loop and between the linker and C-terminus of helix IV. Together these observations show that calcium-free S100B unfolds via a dimeric intermediate.  相似文献   

11.
Spontaneous protein deamidation of labile asparagines (Asn), generating abnormal l-isoaspartyl residues (IsoAsp), is associated with cell aging and enhanced by an oxidative microenvironment. The presence of isopeptide bonds impairs protein structure/function. To minimize the damage, IsoAsp can be “repaired” by the protein l-isoaspartyl/d-aspartyl O-methyltransferase (PIMT) and S-adenosylmethionine (AdoMet) is the methyl donor of this reaction. PIMT is a repair enzyme that initiates the conversion of l-isoAsp (or d-Asp) residues to l-Asp residues. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease principally affecting motor neurons. The condition of oxidative stress reported in familial and sporadic forms of ALS prompted us to investigate Asn deamidation in ALS tissue. Erythrocytes (RBCs) were selected as a model system since they are unable to replace damaged proteins and protein methylesterification is virtually the only AdoMet-consuming reaction operating in these cells. Our data show that, in vitro assay, abnormal IsoAsp residues were significantly higher in ALS patients erythrocyte membrane proteins with an increased methyl accepting capability relative to controls (p < 0.05). Moreover, we observed a reduction in AdoMet levels, while AdoHcy concentration was comparable to that detected in the control, resulting in a lower [AdoMet]/[AdoHcy] ratio. Then, the accumulation of altered aspartyl residues in ALS patients is probably related to a reduced efficiency of the S-adenosylmethionine (AdoMet)-dependent repair system causing increased protein instability at Asn sites. The increase of abnormal residues represents a new protein alteration that may be present not only in red blood cells but also in other cell types of patients suffering from ALS.  相似文献   

12.
Thermodynamic stability and unfolding kinetics of proteins are typically determined by monitoring protein unfolding with spectroscopic probes, such as circular dichroism (CD) and fluorescence. UV absorbance at 230 nm (A230) is also known to be sensitive to protein conformation. However, its feasibility for quantitative analysis of protein energetics has not been assessed. Here we evaluate A230 as a structural probe to determine thermodynamic stability and unfolding kinetics of proteins. By using Escherichia coli maltose binding protein (MBP) and E. coli ribonuclease H (RNase H) as our model proteins, we monitored their unfolding in urea and guanidinium chloride with A230. Significant changes in A230 were observed with both proteins on unfolding in the chemical denaturants. The global stabilities were successfully determined by measuring the change in A230 in varying concentrations of denaturants. Also, unfolding kinetics was investigated by monitoring the change in A230 under denaturing conditions. The results were quite consistent with those determined by CD. Unlike CD, A230 allowed us to monitor protein unfolding in a 96-well microtiter plate with a UV plate reader. Our finding suggests that A230 is a valid and convenient structural probe to determine thermodynamic stability and unfolding kinetics of proteins with many potential applications.  相似文献   

13.
ATP-dependent phosphoenolpyruvate (PEP) carboxykinases are found in plants and microorganisms, and catalyse the reversible formation of PEP, ADP, and CO(2) from oxaloacetate plus ATP. These enzymes vary in quaternary structure although there is significant sequence identity among the proteins isolated from different sources. To help understand the influence of quaternary structure in protein stability, the urea-induced unfolding of free- and substrate-bound tetrameric Saccharomyces cerevisiae PEP carboxykinase is described and compared with the unfolding characteristics of the monomeric Escherichia coli enzyme [Eur. J. Biochem. 255 (1998) 439]. The urea-induced denaturation of S. cerevisiae PEP carboxykinase was studied by monitoring the enzyme activity, intrinsic protein fluorescence, circular dichroism (CD) spectra, and 1-anilino-8-naphthalenesulfonate (ANS) binding. The unfolding profiles were multi-steps, and formation of hydrophobic structures were detected. The data indicate that unfolding and dissociation of the enzyme tetramer are simultaneous events. Ligand binding, most notably PEP in the presence of MnCl(2), conferred a marked protection against urea-induced denaturation. A similar protection effect was found when N-iodoacetyl-N'-(5-sulfo-1-napthyl)ethylene diamine (1,5-I-AEDANS) was covalently bound at Cys(365), within the active site region. Refolding experiments indicated that total recovery of tertiary structure was only obtained from samples previously unfolded to less than 30%. In the presence of substrates, complete refolding was achieved from samples originally denatured up to 50%. The unfolding behaviour of S. cerevisiae PEP carboxykinase was found to be similar to that of E. coli PEP carboxykinase, however all steps take place at lower urea concentrations. These findings show that, at least for monomeric and tetrameric ATP-dependent PEP carboxykinases, quaternary structure does not contribute to protein conformational stability.  相似文献   

14.
The binding of Von Willebrand Factor to platelets is dependent on the conformation of the A1 domain which binds to platelet GPIbα. This interaction initiates the adherence of platelets to the subendothelial vasculature under the high shear that occurs in pathological thrombosis. We have developed a thermodynamic strategy that defines the A1:GPIbα interaction in terms of the free energies (ΔG values) of A1 unfolding from the native to intermediate state and the binding of these conformational states to GPIbα. We have isolated the intermediate conformation of A1 under nondenaturing conditions by reduction and carboxyamidation of the disulfide bond. The circular dichroism spectrum of reduction and carboxyamidation A1 indicates that the intermediate has ∼10% less α-helical structure that the native conformation. The loss of α-helical secondary structure increases the GPIbα binding affinity of the A1 domain ∼20-fold relative to the native conformation. Knowledge of these ΔG values illustrates that the A1:GPIbα complex exists in equilibrium between these two thermodynamically distinct conformations. Using this thermodynamic foundation, we have developed a quantitative allosteric model of the force-dependent catch-to-slip bonding that occurs between Von Willebrand Factor and platelets under elevated shear stress. Forced dissociation of GPIbα from A1 shifts the equilibrium from the low affinity native conformation to the high affinity intermediate conformation. Our results demonstrate that A1 binding to GPIbα is thermodynamically coupled to A1 unfolding and catch-to-slip bonding is a manifestation of this coupling. Our analysis unites thermodynamics of protein unfolding and conformation-specific binding with the force dependence of biological catch bonds and it encompasses the effects of two subtypes of mutations that cause Von Willebrand Disease.  相似文献   

15.
These studies attempt to characterize the molten globule-like intermediate in the unfolding pathway of peanut agglutinin (PNA). PNA is the only known example of a homotetrameric protein that lacks the 2,2,2 or the fourfold symmetry. Previous studies have shown that PNA describes a non two-state unfolding process populated with a clearly defined intermediate. The intermediate is monomeric and has lost most of its tertiary structure and has a substantial amount of secondary structure still intact, thus described as a molten-globule (MG)-like intermediate. It was also shown by isothermal titration calorimetry to bind to lactose and some other ligands with an affinity similar to that of the native protein. This paper describes limited protease cleavage experiments on the intermediate using trypsin and protease V8 for its structural characterization. There are two hydrophobic cores in the PNA subunit. These experiments suggest that in the MG-like intermediate, the second hydrophobic core, near the sugar-binding loop of the protein loosens up. This effect is significantly reduced by the presence of 90% saturating lactose, as deduced by a reduction in cleavage propensity. This is also supported by the gain in the tertiary structure as observed by near-UV CD.  相似文献   

16.
Ribonuclease A has been immobilized on silica beads through glutaraldeyde-mediated chemical coupling in order to improve the stability of the protein against thermal denaturation. The thermodynamic and binding properties of the immobilized enzyme have been studied and compared with those of the free enzyme. The parameters describing the binding of the inhibitor 3′ -CMP (Ka and ΔH) as monitored by spectrophotometry and calorimetry were not significantly affected after immobilization. Conversely both the stability and unfolding mechanism drastically changed. Thermodynamic analysis of the DSC data suggests that uncoupling of protein domains has occurred as a consequence of the immobilization. The two state approximation of the protein unfolding process is not longer valid for the immobilized RNase. Protein stability strongly depends on the hydrophobicity properties of the support surface as well as on the presence of the inhibitor and pH. For example, after immobilization on a highly hydrophobic surface, the enzyme is partially in the unfolded state. The binding of a ligand is able to reorganize the protein structure into a native-like conformation. The refolding rates are different for the two protein domains and vary as a function of pH and presence of the inhibitor 3′-CMP. © 1994 Wiley-Liss, Inc.  相似文献   

17.
K. Zimmermann  M. Heck  J. Frank  J. Kern  A. Zouni 《BBA》2006,1757(2):106-114
Binding of herbicides to photosystem II inhibits the electron transfer from QA to QB due to competition of herbicides with plastoquinone bound at the QB site. We investigated herbicide binding to monomeric and dimeric photosystem II core complexes (PSIIcc) isolated from Thermosynechococcus elongatus by a combination of different methods (isothermal titration and differential scanning calorimetry, CD spectroscopy and measurements of the oxygen evolution) yielding binding constants, enthalpies and stoichiometries for various herbicides as well as information regarding stabilization/destabilization of the complex. Herbicide binding to detergent-solubilized PSIIcc can be described by a model of single independent binding sites present on this important membrane protein. Interestingly, binding stoichiometries herbicide:PSIIcc are lower than 1:1 and vary depending on the herbicide under study. Strong binding herbicides such as terbutryn stabilize PSIIcc in thermal unfolding experiments and endothermically binding herbicides like ioxynil probably cause large structural changes accompanied with the binding process as shown by differential scanning calorimetry experiments of the unfolding reaction of PSIIcc monomer in the presence of ioxynil. In addition we studied the occupancy of the QB sites with plastoquinone (PQ9) by measuring flash induced fluorescence relaxation yielding a possible explanation for the deviations of herbicide binding from a 1:1 herbicide/binding site model.  相似文献   

18.
The pro-peptide of human nerve growth factor (NGF) functions as an intramolecular chaperone during oxidative renaturation of proNGF in vitro and interacts intramolecularly with the mature part of native proNGF. Here, we analyzed the structure formation and stability of the pro-peptide in the context of proNGF and its intramolecular interaction with the native mature part. Folding and unfolding of the NGF-coupled pro-peptide, as analyzed by fluorescence, were biphasic reactions with both phases depending on the interaction with the mature part. This interaction was characterized by an overall stability of DeltaG = 20.9 kJ/mol that was subdivided into two reactions, native <--> intermediate state (14.8 kJ/mol) and intermediate <--> unfolded state (6.1 kJ/mol). An additional very fast unfolding reaction was observed using circular dichroism (CD), indicating the presence of at least two kinetically populated intermediates in the unfolding of proNGF. The part of the pro-peptide involved in the intramolecular association with mature NGF comprised the peptide Trp(-83)-Ala(-63) as determined by H/D exchange experiments. Spectroscopic analyses revealed that on the NGF side, a surface area around Trp(21) interacted with the pro-peptide. Trp(21) also participates in binding to TrkA and p75 receptors. These overlapping binding sites of the pro-peptide and the NGF receptors might explain the previously observed lower affinity of proNGF to its receptors as compared to NGF.  相似文献   

19.
In this work, the unfolding of CopC was used to elucidate details of the protein structure through different spectroscopic techniques. The interactions of CopC and its mutants with the anionic surfactant sodium dodecyl sulfate (SDS), guanidinium hydrochloride, and urea were monitored by fluorescence spectroscopy, far-UV circular dichroism spectroscopy, and fluorescence lifetime measurements. The interaction of SDS with CopC resulted in the formation of a partially folded intermediate. In this intermediate, the structure of the C-terminal is unfolded, whereas the N-terminal retains the native structure. Further, we have explored the effects of metals on the intermediate in aqueous surfactant. The results suggested that the Ag+ ion has a large effect on the unfolding induced by SDS. In addition, the binding capacity of the different unfolding degree protein toward Cu2+ indicated the high stability of the N-terminal. The protein–Cu2+ unfolding induced by guanidinium hydrochloride and urea caused the binding of Cu2+ to increase the stability of the N-terminal, which resulted in an intermediate in the unfolding process. The first transition corresponded to unfolding of the C-terminal, and the second transition was attributed to unfolding of the N-terminal. Furthermore, the anisotropy decay indicated that the motion of tryptophan occurred at a higher urea concentration, which suggested the high stability of the N-terminal. Steered molecular dynamics simulations also indicated that the structure of the N-terminal was rigid.  相似文献   

20.
To probe intermediate states during unfolding and oligomerization of proteins remains a major challenge. High pressure (HP) is a powerful tool for studying these problems, revealing subtle structural changes in proteins not accessible by other means of denaturation. Bovine β-lactoglobulin (BLG), the main whey protein, has a strong propensity to bind various bioactive molecules such as retinol and resveratrol, two ligands with different affinity and binding sites. By combining in situ HP-small-angle neutron scattering (SANS) and HP-ultraviolet/visible absorption spectroscopy, we report the specific effects of these ligands on three-dimensional conformational and local changes in BLG induced by HP. Depending on BLG concentration, two different unfolding mechanisms are observed in situ under pressures up to ∼300 MPa: either a complete protein unfolding, from native dimers to Gaussian chains, or a partial unfolding with oligomerization in tetramers mediated by disulfide bridges. Retinol, which has a high affinity for the BLG hydrophobic cavity, significantly stabilizes BLG both in three-dimensional and local environments by shifting the onset of protein unfolding by ∼100 MPa. Increasing temperature from 30 to 37°C enhances the hydrophobic stabilization effects of retinol. In contrast, resveratrol, which has a low binding affinity for site(s) on the surface of the BLG, does not induce any significant effect on the structural changes of BLG due to pressure. HP treatment back and forth up to ∼300 MPa causes irreversible covalent oligomerization of BLG. Ab initio modeling of SANS shows that the oligomers formed from the BLG-retinol complex are smaller and more elongated compared to BLG without ligand or in the presence of resveratrol. By combining HP-SANS and HP-ultraviolet/visible absorption spectroscopy, our strategy highlights the crucial role of BLG hydrophobic cavity and opens up new possibilities for the structural determination of HP-induced protein folding intermediates and irreversible oligomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号