首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thioflavin T (ThT) becomes fluorescent in the presence of the G-quadruplex structure such as that formed by the human telomeric motif. In this report, we extend and generalize these observations and show that this dye may be used as a convenient and specific quadruplex probe. In the presence of most, but not all, G4-forming sequences, we observed a large increase in ThT fluorescence emission, whereas the presence of control duplexes and single strands had a more limited effect on emission. This differential behavior allowed us to design a high-throughput assay to detect G4 formation. Hundreds of different oligonucleotides may be tested in parallel for G4 formation with a simple fluorescence plate reader. We applied this technique to a family of aptamers not previously recognized as G4-forming sequences and demonstrated that ThT fluorescence signal may be used to predict G4 formation.  相似文献   

2.
Guanine-rich sequences can fold into four-stranded structures of stacked guanine-tetrads, so-called G-quadruplexes (G4). These unique motifs have been extensively studied on the DNA level; however, exploration of the biological roles of G4s at the RNA level is just emerging. Here we show that G4 RNA when introduced within coding regions are capable of stimulating −1 ribosomal frameshifting (−1 FS) in vitro and in cultured cells. Systematic manipulation of the loop length between each G-tract revealed that the −1 FS efficiency positively correlates with G4 stability. Addition of a G4-stabilizing ligand, PhenDC3, resulted in higher −1 FS. Further, we demonstrated that the G4s can stimulate +1 FS and stop codon readthrough as well. These results suggest a potentially novel translational gene regulation mechanism mediated by G4 RNA.  相似文献   

3.
4.
G-quadruplexes (G4s) are non-B DNA structures present in guanine-rich regions of gene regulatory areas, promoters and CpG islands, but their occurrence and functions remain incompletely understood. Thus, methodology to identify G4 sequences is needed. Here, we describe the synthesis of a novel cyclic hepta-oxazole compound, L1Bio-7OTD (1), bearing a biotin affinity-tag as a tool to pull down G4 structures from mixtures of G4-forming and non G4-forming DNA sequences. We confirmed that it could pull down G4s associated with telomeres, bcl-2 gene, and c-kit gene.  相似文献   

5.
Mitochondrial ATP synthase (F(1)F(o)-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In the present study, we investigated the structure-function relationship of the yeast ATPase inhibitor by amino acid replacement. A total of 22 mutants were isolated and characterized. Five mutants (F17S, R20G, R22G, E25A, and F28S) were entirely inactive, indicating that the residues, Phe17, Arg20, Arg22, Glu25, and Phe28, are essential for the ATPase inhibitory activity of the protein. The activity of 7 mutants (A23G, R30G, R32G, Q36G, L37G, L40S, and L44G) decreased, indicating that the residues, Ala23, Arg30, Arg32, Gln36, Leu37, Leu40, and Leu44, are also involved in the activity. Three mutants, V29G, K34Q, and K41Q, retained normal activity at pH 6.5, but were less active at pH 7.2, indicating that the residues, Val29, Lys34, and Lys41, are required for the protein's action at higher pH. The effects of 6 mutants (D26A, E35V, H39N, H39R, K46Q, and K49Q) were slight or undetectable, and the residues Asp26, Glu35, His39, Lys46, and Lys49 thus appear to be dispensable. The mutant E21A retained normal ATPase inhibitory activity but lacked pH-sensitivity. Competition experiments suggested that the 5 inactivated mutants (F17S, R20G, R22G, E25A, and F28S) could still bind to the inhibitory site on F(1)F(o)-ATPase. These results show that the region from the position 17 to 28 of the yeast inhibitor is the most important for its activity and is required for the inhibition of F(1), rather than binding to the enzyme.  相似文献   

6.
The potential formation of G-quadruplexes in many regions of the genome makes them an attractive target for drug design. A large number of small molecules synthesized in recent years display an ability to selectively target and stabilize G-quadruplexes. To screen for G4 ligands, we modified a G4-FID (G-quadruplex Fluorescent Intercalator Displacement) assay. This test is based on the displacement of an “on/off” fluorescence probe, Thiazole Orange (TO), from quadruplex or duplex DNA matrices by increasing amounts of a putative ligand. Selectivity measurements can easily be achieved by comparing the ability of the ligand to displace TO from various quadruplex and duplex structures. G4-FID requires neither modified oligonucleotides nor specific equipment and is an isothermal experiment. This test was adapted for high throughput screening onto 96-well plates allowing the comparison of more than twenty different structures. Fifteen different known G4 ligands belonging to different families were tested. Most compounds showed a good G4 vs duplex selectivity but exhibited little, if any, specificity for one quadruplex sequence over the others. The quest for the “perfect” specific G4 ligand is not over yet!  相似文献   

7.
A coenzyme-F420-reducing and an H2-forming methylenetetrahydromethanopterin dehydrogenase have been isolated from Methanobacterium thermoautotrophicum (Marburg). Indirect evidence suggested that the former enzyme (32 kDa) might be derived from the latter enzyme (42 kDa) by proteolysis. To test this hypothesis the gene sequence of the H2-forming dehydrogenase was determined and compared with the N-terminal amino acid sequence of the F420-reducing dehydrogenase. No corresponding sequences were found indicating that the two dehydrogenases are genetically distinct enzymes. With purified enzyme preparations it is shown that the activity of the F420-reducing dehydrogenase is inhibited in the presence of the H2-forming enzyme. This finding is discussed in terms of substrate competition.  相似文献   

8.
9.
The remarkable selectivity of N-methyl mesoporphyrin IX (NMM) for G-quadruplexes (GQs) is long known, however its ability to stabilize and bind GQs has not been investigated in detail. Through the use of circular dichroism, UV-visible spectroscopy and fluorescence resonance energy transfer (FRET) melting assay we have shown that NMM stabilizes human telomeric DNA dAG(3)(TTAG(3))(3) (Tel22) and is selective for its parallel conformation to which it binds in 1:1 stoichiometry with a binding constant of ≈ 1.0 × 10(5)M(-1). NMM does not interact with an antiparallel conformation of Tel22 in sodium buffer and is the second example in the literature, after TOxaPy, of a ligand with an excellent selectivity for a specific GQ structure. NMM's stabilizing ability toward predominantly parallel GQ conformation is universal: it stabilizes a variety of biologically relevant G-rich sequences including telomeres and oncogene promoters. The N-methyl group is integral for selectivity and stabilization, as the unmethylated analogue, mesoporphyrin IX, does not stabilize GQ DNA in FRET melting assays. Finally, NMM induces the isomerization of Tel22 into a structure with increased parallel component in K(+) but not in Na(+) buffer. The ability of NMM to cause structural rearrangement and efficient stabilization of Tel22 may bear biological significance.  相似文献   

10.
In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Δ cells. Hence, we conclude that CEB1 instability in pif1Δ cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences.  相似文献   

11.
A significant number of sequences in the human genome form noncanonical G-quadruplexes (G4s) with bulges or a guanine vacancy. Here, we systematically characterized the mechanical stability of parallel-stranded G4s with a one to seven nucleotides bulge at various positions. Our results show that G4-forming sequences with a bulge form multiple conformations, including fully-folded G4 with high mechanical stability (unfolding forces > 40 pN), partially-folded intermediates (unfolding forces < 40 pN). The folding probability and folded populations strongly depend on the positions and lengths of the bulge. By combining a single-molecule unfolding assay, dimethyl sulfate (DMS) footprinting, and a guanine-peptide conjugate that selectively stabilizes guanine-vacancy-bearing G-quadruplexes (GVBQs), we identified that GVBQs are the major intermediates of G4s with a bulge near the 5′ or 3′ ends. The existence of multiple structures may induce different regulatory functions in many biological processes. This study also demonstrates a new strategy for selectively stabilizing the intermediates of bulged G4s to modulate their functions.  相似文献   

12.
The nucleotide sequence of the Pseudomonas saccharophila gene encoding maltotetraohydrolase (G4-forming amylase) has been determined. The coding region for the G4-forming amylase precursor contained 1653 nucleotides. The deduced precursor protein included an N-terminal 21-residue putative signal peptide; the deduced mature form of G4-forming amylase contains 530 amino acid residues with a calculated molecular mass of 57 740 Da. Sequence similarities between the G4-forming amylase and other amylolytic enzymes of species ranging from prokaryotes to eukaryotes are quite limited. However, three regions, which are involved in both the catalytic and substrate-binding sites of various amylolytic enzymes, are highly conserved in the G4-forming amylase of P. saccharophila.  相似文献   

13.
G-rich nucleic acids can form non-canonical G-quadruplex structures (G4s) in which four guanines fold in a planar arrangement through Hoogsteen hydrogen bonds. Although many biochemical and structural studies have focused on DNA sequences containing successive, adjacent guanines that spontaneously fold into G4s, evidence for their in vivo relevance has recently begun to accumulate. Complete sequencing of the human genome highlighted the presence of ∼300 000 sequences that can potentially form G4s. Likewise, the presence of putative G4-sequences has been reported in various viruses genomes [e.g., Human immunodeficiency virus (HIV-1), Epstein–Barr virus (EBV), papillomavirus (HPV)]. Many studies have focused on telomeric G4s and how their dynamics are regulated to enable telomere synthesis. Moreover, a role for G4s has been proposed in cellular and viral replication, recombination and gene expression control. In parallel, DNA aptamers that form G4s have been described as inhibitors and diagnostic tools to detect viruses [e.g., hepatitis A virus (HAV), EBV, cauliflower mosaic virus (CaMV), severe acute respiratory syndrome virus (SARS), simian virus 40 (SV40)]. Here, special emphasis will be given to the possible role of these structures in a virus life cycle as well as the use of G4-forming oligonucleotides as potential antiviral agents and innovative tools.  相似文献   

14.
G-quadruplexes (G4) have been found increasing potential in applications, such as molecular therapeutics, diagnostics and sensing. Both Thioflavin T (ThT) and N-Methyl mesoporphyrin IX (NMM) become fluorescent in the presence of most G4, but thrombin-binding aptamer (TBA) has been reported as the only exception of the known G4-forming oligonucleotides when ThT is used as a high-throughput assay to identify G4 formation. Here, we investigate the interactions between ThT/NMM and TBA through fluorescence spectroscopy, circular dichroism and molecular docking simulation experiments in the absence or presence of cations. The results display that a large ThT fluorescence enhancement can be observed only when ThT bind to the parallel TBA quadruplex, which is induced to form by ThT in the absence of cations. On the other hand, great promotion in NMM fluorescence can be obtained only in the presence of anti-parallel TBA quadruplex, which is induced to fold by K+ or thrombin. The highly selective recognition of TBA quadruplex with different topologies by the two probes may be useful to investigate the interactions between conformation-specific G4 and the associated proteins, and could also be applied in label-free fluorescent sensing of other biomolecules.  相似文献   

15.
In order to understand in which biological processes the four-stranded G-quadruplex (G4) DNA structures play a role, it is important to determine which predicted regions can actually adopt a G4 structure. Here, to identify DNA regions in Schizosaccharomyces pombe that fold into G4 structures, we first optimized a quantitative PCR (qPCR) assay using the G4 stabilizer, PhenDC3. We call this method the qPCR stop assay, and used it to screen for G4 structures in genomic DNA. The presence of G4 stabilizers inhibited DNA amplification in 14/15 unexplored genomic regions in S. pombe that encompassed predicted G4 structures, suggesting that at these sites the stabilized G4 structure formed an obstacle for the DNA polymerase. Furthermore, the formation of G4 structures was confirmed by complementary in vitro assays. In vivo, the S. pombe G4 unwinder Pif1 helicase, Pfh1, was associated with tested G4 sites, suggesting that the G4 structures also formed in vivo. Thus, we propose that the confirmed G4 structures in S. pombe form an obstacle for replication in vivo, and that the qPCR stop assay is a method that can be used to identify G4 structures. Finally, we suggest that the qPCR stop assay can also be used for identifying G4 structures in other organisms, as well as being adapted to screen for novel G4 stabilizers.  相似文献   

16.
The binding of ATP to trimeric P2X receptors (P2XR) causes an enlargement of the receptor extracellular vestibule, leading to opening of the cation-selective transmembrane pore, but specific roles of vestibule amino acid residues in receptor activation have not been evaluated systematically. In this study, alanine or cysteine scanning mutagenesis of V47–V61 and F324–N338 sequences of rat P2X4R revealed that V49, Y54, Q55, F324, and G325 mutants were poorly responsive to ATP and trafficking was only affected by the V49 mutation. The Y54F and Y54W mutations, but not the Y54L mutation, rescued receptor function, suggesting that an aromatic residue is important at this position. Furthermore, the Y54A and Y54C receptor function was partially rescued by ivermectin, a positive allosteric modulator of P2X4R, suggesting a rightward shift in the potency of ATP to activate P2X4R. The Q55T, Q55N, Q55E, and Q55K mutations resulted in non-responsive receptors and only the Q55E mutant was ivermectin-sensitive. The F324L, F324Y, and F324W mutations also rescued receptor function partially or completely, ivermectin action on channel gating was preserved in all mutants, and changes in ATP responsiveness correlated with the hydrophobicity and side chain volume of the substituent. The G325P mutant had a normal response to ATP, suggesting that G325 is a flexible hinge. A topological analysis revealed that the G325 and F324 residues disrupt a β-sheet upon ATP binding. These results indicate multiple roles of the extracellular vestibule amino acid residues in the P2X4R function: the V49 residue is important for receptor trafficking to plasma membrane, the Y54 and Q55 residues play a critical role in channel gating and the F324 and G325 residues are critical for vestibule widening.  相似文献   

17.
Little is known about the molecular pathogenesis of Autism spectrum disorder (ASD), a neurodevelopmental disorder. Here we identified two mutations in the G-protein-coupled receptor 37 gene (GPR37) localized on chromosome 7q31–33, called the AUTS1 region, of ASD patients; 1585–1587 ttc del (Del312F) in one Japanese patient and G2324A (R558Q) in one Caucasian patient. The Del312F was located in the conserved transmembrane domain, and the R558Q was located in a conserved region just distal to the last transmembrane domain. In addition, a potential ASD-related GPR37 variant, T589M, was found in 7 affected Caucasian men from five different families. Our results suggested that some alleles in GPR37 were related to the deleterious effect of ASD. GPR37 is associated with the dopamine transporter to modulate dopamine uptake, and regulates behavioral responses to dopaminergic drugs. Thus, dopaminergic neurons may be involved in the ASD. However, we also detected the Del321F mutation in the patient''s unaffected father and R558Q in not only an affected brother but also an unaffected mother. The identification of unaffected parents that carried the mutated alleles suggested that the manifestation of ASD was also influenced by factors other than these mutations, including endoplasmic reticulum stress of the mutated proteins or gender. Our study will provide the new insight into the molecular pathogenesis of ASD.  相似文献   

18.
The estrogen-related receptor-gamma (ERRgamma) is a constitutively active orphan receptor that belongs to the nuclear receptor superfamily and is most closely related to the estrogen receptors. Although its physiological ligand is unknown, ERRgamma has been shown to interact with synthetic estrogenic compounds such as 4-hydroxytamoxifen (4-OHT), tamoxifen, and diethylstilbestrol (DES). To assess how coregulator proteins interact with ERRgamma in response to ligand, an in vitro interaction methodology using time-resolved fluorescence resonance energy transfer (TR-FRET) was developed using glutathione S-transferase (GST)-tagged ERRgamma ligand-binding domain (LBD), a terbium-labeled anti-GST antibody, a fluorescein-labeled peptide containing sequences derived from coregulator proteins, and various ligands. An initial screen of these coregulator peptides bearing the coactivator LXXLL motif, the corepressor LXXI/HIXXXI/L motif, or other interaction motifs from natural coactivator sequences or random phage display peptides indicated that the peptides PGC1alpha, D22, and SRC1-4, known as class III coregulators, interacted most strongly with ERRgamma in the absence of ligand. Given its assay window and biological relevance in energy metabolism and obesity, further studies were conducted with PGC1alpha. Fluorescein-labeled PGC1alpha peptide was displaced from the ERRgamma LBD in the presence of increasing concentrations of 4-OHT and tamoxifen, but DES was less effective in PGC1alpha displacement. The statistical parameter Z' factor that measures the robustness of the assay was greater than 0.8 for displacement of PGC1alpha from ERRgamma LBD in the presence of saturating 4-OHT over an assay incubation time of 1-6 h, indicating an excellent assay. These findings also suggest that binding of 4-OHT, tamoxifen, or DES to ERRgamma results in differential affinity of coregulators for ERRgamma due to unique ligand-induced conformations.  相似文献   

19.
Telomeric DNA and C-myc22 are DNA G-quadruplex (G4)-forming sequences associated with tumorigenesis. Ligands that can facilitate the formation and increase the stabilization of G4 can halt tumor cell proliferation and have been regarded as potential anti-cancer drugs. In the present study, we have investigated the interaction of 11 natural alkaloids with G4 formed by telomeric DNA and C-myc22 sequences. Our results indicated that sanguinarine (San), palmatine (Pal), and berberine (Beb) of the first series (S1) can induce the formation of G4 as well as increase the stabilization ability. Daurisoline (S2-1), O-methyldauricine (S2-2), O-diacetyldaurisoline (S2-3), daurinoline (S2-4), dauricinoline (S2-5), N,N'-dimethyldauricine iodide (S2-6), and N,N'-dimethyldaurisoline iodide (S2-7) of the second series (S2) showed similar stabilization ability. We found that unsaturated ring C, N(+) positively charged centers, and conjugated aromatic rings are key factors to increase the stabilization ability of S1, and we gave some advice on structure modification to S2 through structure-activity study. Besides, we found San and Pal to be cell cycle blocker in G(1). San was speculated to bind to G4 through intercalation or end stacking.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号