首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzyme electrophoresis was employed to examine genetic variation within and among the three diploid (n=12) species comprisingCoreopsis sectionCalliopsis: C. leavenworthii, C. paludosa andC. tinctoria. Twelve enzymes specified by 20 genes were included, and those isozymes localized in the plastids were identified for several of the enzymes. Mean genetic identities calculated for pair-wise comparisons of 22 populations (four ofC. leavenworthii, one forC. paludosa, and 17 ofC. tinctoria) reveal no genetic differentiation betweenC. leavenworthii andC. tinctoria, whereasC. paludosa exhibits lowered values with the other two taxa. These results are in general agreement with concepts of relationships inferred from morphological and biosystematic data. That is,C. paludosa has been viewed as more distinct fromC. leavenworthii andC. tinctoria than the latter two are from each other. The high similarity betweenC. leavenworthii andC. tinctoria is somewhat unexpected, however, given the several morphological features that serve consistently to distinguish them.  相似文献   

2.
Mandible development in the larval stages I–V of two palaemonid shrimp species, Palaemon elegans and Macrobrachium amazonicum, was analyzed using scanning electron microscopy, light microscopy, and confocal laser scanning microscopy. In contrast to the zoea I of P. elegans, first‐stage larvae of M. amazonicum are nonfeeding. At hatching, the morphology of the mandibles is fully expressed in P. elegans, while it appears underdeveloped in M. amazonicum, presenting only small precursors of typical caridean features. In successive zoeal stages, both species show similar developmental changes, but the mandibular characters of the larvae in M. amazonicum were delayed compared to the equivalent stages in P. elegans, especially in the development of submarginal setae and mandible size. In conclusion, our results indicate heterochrony (postdisplacement) of mandible development in M. amazonicum compared to that in P. elegans, which is related to initial lack of mandible functionality or planktivorous feeding at hatching, respectively. This conclusion is supported by comparison with other palaemonid zoeae exhibiting different feeding modes. Our data suggest that an evolutionary ground pattern of mandible morphology is present even in species with nonfeeding first‐stage larvae. J. Morphol. 275:1258–1272, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The sensitivity of acetylcholinesterases (ACHE) isolated from the plant-parasitic nematodes Meloidogyne arenaria, M. incognita, and Heterodera glycines and the free-living nematode Caenorhabditis elegans to carbamate and organophosphate nematicides was examined. The AChE from plant-parasitic nematode species were more sensitive to carbamate inhibitors than was AChE from C. elegans, but response to the organophosphates was approximately equivalent. The sulfur-containing phosphate nematicides were poor inhibitors of nematode acetylcholinesterase, but treatment with an oxidizing agent greatly improved inhibition. Behavioral bioassays with living nematodes revealed a poor relationship between enzyme inhibition and expression of symptoms in live nematodes.  相似文献   

4.
Rasajeyna nannyla was an established pathogen at the two sample sites, and under the relatively constant conditions during two seasons, there was little change in the incidence of this pathogen. The incidence of R. nannyla was higher in Tipula vittata, a leatherjacket inhabiting damp regions of the sample sites, than in T. paludosa which inhabits drier regions. Monthly fluctuations of the level of R. nannyla in leatherjackets were not related to monthly variations in temperature. The incidence of R. nannyla in T. paludosa as a function of temperature is a significant positive slope, whereas the incidence of R. nannyla in T. vittata as a function of temperature is a significant negative slope.  相似文献   

5.
Mitochondrial DNA sequences were obtained from the NADH dehydrogenase subunit 3 (ND3), large rRNA, and cytochrome b genes from Meloidogyne incognita and Romanomermis culicivorax. Both species show considerable genetic distance within these same genes when compared with Caenorhabditis elegans or Ascaris suum, two species previously analyzed. Caenorhabditis, Ascaris, and Meloidogyne were selected as representatives of three subclasses in the nematode class Secernentea: Rhabditia, Spiruria, and Diplogasteria, respectively. Romanomermis served as a representative out-group of the class Adenophorea. The divergence between the phytoparasitic lineage (represented by Meloidogyne) and the three other species is so great that virtually every variable position in these genes appears to have accumulated multiple mutations, obscuring the phylogenetic information obtainable from these comparisons. The 39 and 42% amino acid similarity between the M. incognita and C. elegans ND3 and cytochrome b coding sequences, respectively, are approximately the same as those of C. elegans-mouse comparisons for the same genes (26 and 44%). This discovery calls into question the feasibility of employing cloned C. elegans probes as reagents to isolate phytoparasitic nematode genes. The genetic distance between the phytoparasitic nematode lineage and C. elegans markedly contrasts with the 79% amino acid similarity between C. elegans and A. suum for the same sequences. The molecular data suggest that Caenorhabditis and Ascaris belong to the same subclass.  相似文献   

6.
Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa.  相似文献   

7.
The vulnerability of gastropods to their predators varies with life history traits such as morphology, body size, behavior, and growth rates as well as predator size. A recent study suggested that the invasive apple snail, Pomacea maculata, was considerably more vulnerable to crayfish predators than the native Florida apple snail, P. paludosa. The difference was hypothesized to be caused by the relatively small hatchling size of P. maculata. To test this hypothesis, we conducted a series of feeding assays designed to quantify maximum feeding rates and selective foraging of crayfish on apple snails. The rate at which crayfish killed individual P. maculata (i.e., kill rates) decreased with snail size, and kill rates on both species increased with crayfish size. Kill rates on juvenile P. maculata were higher than kill rates on size-matched hatchling P. paludosa, and crayfish fed selectively on P. maculata when offered mixed groups of size-matched snails. Further analyses revealed that hatchling P. paludosa possess shells 1.8× heavier than size-matched P. maculata suggesting differences in vulnerability to crayfish were consistent with interspecific differences in shell defenses. Differences in hatchling size and defensive traits in combination make crayfish kill rates on hatchling P. maculata approximately 15.4× faster than on hatchling P. paludosa, but the relative contribution of hatchling size to differences in apple snail vulnerability was >3× greater than the contribution of defensive traits.  相似文献   

8.
Because there is considerable variation in gene expression even between closely related species, it is clear that gene regulatory mechanisms evolve relatively rapidly. Because primary sequence conservation is an unreliable proxy for functional conservation of cis-regulatory elements, their assessment must be carried out in vivo. We conducted a survey of cis-regulatory conservation between C. elegans and closely related species C. briggsae, C. remanei, C. brenneri, and C. japonica. We tested enhancers of eight genes from these species by introducing them into C. elegans and analyzing the expression patterns they drove. Our results support several notable conclusions. Most exogenous cis elements direct expression in the same cells as their C. elegans orthologs, confirming gross conservation of regulatory mechanisms. However, the majority of exogenous elements, when placed in C. elegans, also directed expression in cells outside endogenous patterns, suggesting functional divergence. Recurrent ectopic expression of different promoters in the same C. elegans cells may reflect biases in the directions in which expression patterns can evolve due to shared regulatory logic of coexpressed genes. The fact that, despite differences between individual genes, several patterns repeatedly emerged from our survey, encourages us to think that general rules governing regulatory evolution may exist and be discoverable.  相似文献   

9.
THE STRUCTURE OF INSECT VIRUS PARTICLES   总被引:1,自引:1,他引:0       下载免费PDF全文
Thin sections have been cut of the virus particles from four types of insect virus diseases: cytoplasmic polyhedroses of lepidopterous larvae, a nuclear polyhedrosis of Tipula paludosa (Diptera), a granulosis from Melanchra persicariae (Lepidoptera), and a new virus disease without polyhedra from T. paludosa. The cytoplasmic polyhedral viruses are thought to have composite particles in some cases. The shape and enveloping membranes of the different virus particles are compared. In the new virus disease of T. paludosa some of the virus particles appear to be empty; inclusion bodies surrounded by complicated membranes are also demonstrated.  相似文献   

10.
The reproductive span (RS) of organisms could be affected by different factors during their lifetime. In the model nematode, Caenorhabditis elegans, RS is affected by both genetic and environmental factors. However, none of the factors identified so far were related to environmental bacteria, which may incidentally appear anywhere in the habitats of C. elegans. We aimed to find environmental bacteria that could affect the RS of C. elegans and related species. We tested 109 bacterial isolates and found that Microbacterium sp. CFBb37 increased the RS and lifespan of C. elegans but reduced its brood size. We studied the effect of M. sp. CFBb37 on the RS of Caenorhabditis briggsae, Caenorhabditis tropicalis, and another Rhabditidae family species, Protorhabditis sp., and found similar trends of RS extension in all three cases, suggesting that this bacterial species may induce the extension of RS broadly among Caenorhabditis species and possibly for many other Rhabditidae. This work will facilitate future research on the mechanism underlying the bacterial extension of RS of nematodes and possibly other animals.  相似文献   

11.

Background

Government agencies have defined a need to reduce, refine or replace current mammalian-based bioassays with testing methods that use alternative species. Invertebrate species, such as Caenorhabditis elegans, provide an attractive option because of their short life cycles, inexpensive maintenance, and high degree of evolutionary conservation with higher eukaryotes. The C. elegans pharynx is a favorable model for studying neuromuscular function, and the effects of chemicals on neuromuscular activity, i.e., feeding. Current feeding methodologies, however, are labor intensive and only semi-quantitative.

Methodology/Principal Findings

Here a high-throughput assay is described that uses flow cytometry to measure C. elegans feeding by determining the size and intestinal fluorescence of hundreds of nematodes after exposure to fluorescent-labeled microspheres. This assay was validated by quantifying fluorescence in feeding-defective C. elegans (eat mutants), and by exposing wild-type nematodes to the neuroactive compounds, serotonin and arecoline. The eat mutations previously determined to cause slow pumping rates exhibited the lowest feeding levels with our assay. Concentration-dependent increases in feeding levels after serotonin exposures were dependent on food availability, while feeding levels decreased in arecoline-exposed nematodes regardless of the presence of food. The effects of the environmental contaminants, cadmium chloride and chlorpyrifos, on wild-type C. elegans feeding were then used to demonstrate an application of the feeding assay. Cadmium exposures above 200 µM led to a sharp drop in feeding levels. Feeding of chlorpyrifos-exposed nematodes decreased in a concentration-dependent fashion with an EC50 of 2 µM.

Conclusions/Significance

The C. elegans fluorescence microsphere feeding assay is a rapid, reliable method for the assessment of neurotoxic effects of pharmaceutical drugs, industrial chemicals or environmental agents. This assay may also be applicable to large scale genetic or RNAi screens used to identify genes that are necessary for the development or function of the pharynx or other neuromuscular systems.  相似文献   

12.
13.
The cyclooctadepsipeptide emodepside and its parent compound PF1022A are broad-spectrum nematicidal drugs which are able to eliminate nematodes resistant to other anthelmintics. The mode of action of cyclooctadepsipeptides is only partially understood, but involves the latrophilin Lat-1 receptor and the voltage- and calcium-activated potassium channel Slo-1. Genetic evidence suggests that emodepside exerts its anthelmintic activity predominantly through Slo-1. Indeed, slo-1 deficient Caenorhabditis elegans strains are completely emodepside resistant. However, direct effects of emodepside on Slo-1 have not been reported and these channels have only been characterized for C. elegans and related Strongylida. Molecular and bioinformatic analyses identified full-length Slo-1 cDNAs of Ascaris suum, Parascaris equorum, Toxocara canis, Dirofilaria immitis, Brugia malayi, Onchocerca gutturosa and Strongyloides ratti. Two paralogs were identified in the trichocephalids Trichuris muris, Trichuris suis and Trichinella spiralis. Several splice variants encoding truncated channels were identified in Trichuris spp. Slo-1 channels of trichocephalids form a monophyletic group, showing that duplication occurred after the divergence of Enoplea and Chromadorea. To explore the function of a representative protein, C. elegans Slo-1a was expressed in Xenopus laevis oocytes and studied in electrophysiological (voltage-clamp) experiments. Incubation of oocytes with 1-10 µM emodepside caused significantly increased currents over a wide range of step potentials in the absence of experimentally increased intracellular Ca2+, suggesting that emodepside directly opens C. elegans Slo-1a. Emodepside wash-out did not reverse the effect and the Slo-1 inhibitor verruculogen was only effective when applied before, but not after, emodepside. The identification of several splice variants and paralogs in some parasitic nematodes suggests that there are substantial differences in channel properties among species. Most importantly, this study showed for the first time that emodepside directly opens a Slo-1 channel, significantly improving the understanding of the mode of action of this drug class.  相似文献   

14.
Of the 56 species and 43 genera of Asteraceae tested, 9 were highly resistant or immune to Meloidogyne incognita and did not form root galls. Twenty-six species and six cultivars had 25% or fewer roots galled and were considered moderately resistant to M. incognita. Pre-planting Cosmos bipinnatus (F190), Gaillardia pulchella, Tagetes erecta, Tithonia diversifolia, or Zinnia elegans (F645) reduced root galling and M. incognita J2 in and around Ipomoea reptans. Amendment of soils with roots, stems, or leaves of G. pulchella was effective in controlling M. incognita on I. reptans. Tissue extracts of G. pulchella were lethal to various plant-parasitic nematodes but were innocuous to free-living nematodes. Root exudates of G. pulchella were lethal to J2 of M. incognita and were inhibitory to the hatch of eggs at the concentration of 250 ppm or higher. Gaillardia pulchella could be used to manage M. incognita as a rotation crop, a co-planted crop, or a soil amendment for control of root-knot nematode.  相似文献   

15.
BackgroundThe porcine nodule worm Oesophagostomum dentatum is a strongylid class V nematode rather closely related to the model organism Caenorhabditis elegans. However, in contrast to the non-parasitic C. elegans, the parasitic O. dentatum is an obligate sexual organism, which makes both a gender and developmental glycomic comparison possible.MethodsDifferent enzymatic and chemical methods were used to release N-glycans from male and female O. dentatum as well as from L3 and L4 larvae. Glycans were analysed by MALDI-TOF MS after either 2D-HPLC (normal then reversed phase) or fused core RP-HPLC.ResultsWhereas the L3 N-glycome was simpler and more dominated by phosphorylcholine-modified structures, the male and female worms express a wide range of core fucosylated N-glycans with up to three fucose residues. Seemingly, simple methylated paucimannosidic structures can be considered ‘male’, while methylation of fucosylated glycans was more pronounced in females. On the other hand, while many of the fucosylated paucimannosidic glycans are identical with examples from other nematode species, but simpler than the tetrafucosylated glycans of C. elegans, there is a wide range of phosphorylcholine-modified glycans with extended HexNAc2–4PC2–4 motifs not observed in our previous studies on other nematodes.ConclusionThe interspecies tendency of class V nematodes to share most, but not all, N-glycans applies also to O. dentatum; furthermore, we establish, for the first time in a parasitic nematode, that glycomes vary upon development and sexual differentiation.General significanceUnusual methylated, core fucosylated and phosphorylcholine-containing N-glycans vary between stages and genders in a parasitic nematode.  相似文献   

16.
17.
The physical separation of a cell into two daughter cells during cytokinesis requires cell-intrinsic shape changes driven by a contractile ring. However, in vivo, cells interact with their environment, which includes other cells. How cytokinesis occurs in tissues is not well understood. Here, we studied cytokinesis in an intact animal during tissue biogenesis. We used high-resolution microscopy and quantitative analysis to study the three rounds of division of the C. elegans vulval precursor cells (VPCs). The VPCs are cut in half longitudinally with each division. Contractile ring breadth, but not the speed of ring closure, scales with cell length. Furrowing speed instead scales with division plane dimensions, and scaling is consistent between the VPCs and C. elegans blastomeres. We compared our VPC cytokinesis kinetics data with measurements from the C. elegans zygote and HeLa and Drosophila S2 cells. Both the speed dynamics and asymmetry of ring closure are qualitatively conserved among cell types. Unlike in the C. elegans zygote but similar to other epithelial cells, Anillin is required for proper ring closure speed but not asymmetry in the VPCs. We present evidence that tissue organization impacts the dynamics of cytokinesis by comparing our results on the VPCs with the cells of the somatic gonad. In sum, this work establishes somatic lineages in post-embryonic C. elegans development as cell biological models for the study of cytokinesis in situ.  相似文献   

18.
To better understand the taxonomy of Pulicaria, the pollen wall architecture of the six Iberian species were investigated using light (LM) and scanning electron microscopy (SEM). The exine structure of Pulicaria odora was also investigated using transmission electron microscopy (TEM). Statistical analysis was performed to distinguish taxonomically significant morphometric information from all the measured parameters of pollen grains. It was found that the exine sculpture characters, with special importance paid to the spines, were the most useful of all characters to define Pulicaria pollen types and separate the species. Three pollen types distinguishable through the spines morphology and the inter-spinular sculpture are described: P. microcephala pollen type (incl. P. microcephala), P. vulgaris pollen type (incl. P. vulgaris), and P. dysenterica pollen type (incl. P. dysenterica, P. odora, P. paludosa and P. sicula). A dichotomous key to these Pulicaria pollen types is proposed. The distribution of P. dysenterica, P. odora, P. paludosa and P. sicula in more than one leaf node in the classification tree reveals that the pollen grains of these species are difficult to segregate. Therefore, the construction of a satisfactory dichotomous key to the P. dysenterica pollen type species is not feasible. Yet, the different spines apex morphology between P. microcephala and P. paludosa and the existence of significant differences in five of the eight studied quantitative pollen characters of these two taxa, supports the opinion that the Berlengas Islands endemic P. microcephala should be accepted as a separate species. In addition, the differences among the spines morphology of P. vulgaris, P. microcephala, and the other four Iberian (and European) species, strengthen the conclusion that the section Pulicaria is non-monophyletic.  相似文献   

19.
A survey of black scaleSaissetia oleae (Olivier) parasitoids present in southern California was conducted between September 1987 and September 1989. From 308 collections of black scale-infested citrus, olive, and oleander twigs from 19 sites in southern California, 1,610 specimens were collected. Nine primary and six secondary parasitoid species were identified. Four primary species were abundant in southern California:Metaphycus bartletti Annecke & Mynhardt,M. helvolus (Compere),Scutellista caerulea (Fonscolombe) (=S. cyanea Motschulsky), andDiversinervus elegans Silvestri. The most common secondary parasitoids wereMarietta mexicana (Howard),Cheiloneurus noxius Compere, andTetrastichus minutus (Howard). In the coastal region of southern California,M. bartletti was the most abundant parasitoid, followed in order byD. elegans, S. Caerulea, andM. helvolus. In the intermediate and interior regions,M. helvolus was most abundant.D. elegans was second most abundant in the intermediate region, but was rare in the interior region.M. bartletti was second in abundance in the interior region and third in the intermediate region.   相似文献   

20.
Processing of leaf litter is an important function in many environments and is influenced strongly by microorganisms. We investigated interactions between an aquatic hyphomycete, Tetrachaetum elegans, and two bacteria from the Cytophaga-Flavobacterium-Bacteroides group, that were isolated from decaying leaves in a stream. Laboratory experiments were used to examine interactions, as indicated by growth, between bacteria and fungi on sugar maple (Acer saccharum) leaves. Responses to amendments with labile dissolved organic carbon (DOC) were also examined. Fungal biomass was not affected by glucose amendment or bacterial presence. Likewise, bacterial biomass did not respond consistently to the glucose amendment, nor did the fungus affect bacterial biomass. In general, we found little evidence of resource competition or facilitation, in contrast to other studies. Our experiments suggest that fungal–bacterial interactions are not always significant and may depend on environmental conditions and the types of microorganisms examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号