首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA-binding proteins (RBPs) are key regulators of gene expression. RBP dysregulation is reported to play essential roles in tumorigenesis. However, the role of RBPs in urothelial carcinoma of the bladder (UCB) is only starting to be unveiled. Here, we comprehensively assessed the mRNA expression landscape of 104 RBPs from two independent UCB cohorts, Sun Yat-sen University Cancer Center (SYSUCC) and The Cancer Genome Atlas (TCGA). Fragile X-related gene 1 (FXR1) was identified as a novel cancer driver gene in UCB. FXR1 overexpression was found to be related to the poor survival rate in the SYSUCC and TCGA cohorts. Functionally, FXR1 promotes UCB proliferation and tumorigenesis. Mechanistically, FXR1 serves as a platform to recruit CFIm25 and CFIm68, forming a novel 3′ processing machinery that functions in sequence-specific poly(A) site recognition. FXR1 affects the 3′ processing of Tumor necrosis factor receptor-associated factor 1 (TRAF1) mRNA, which leads to nuclear stabilization. The novel regulatory relationship between FXR1 and TRAF1 can enhance cell proliferation and suppress apoptosis. Our data collectively highlight the novel regulatory role of FXR1 in TRAF1 3′ processing as an important determinant of UCB oncogenesis. Our study provides new insight into RBP function and provides a potential therapeutic target for UCB.Subject terms: Bladder cancer, Oncogenes  相似文献   

2.
3.
Calmodulin (CaM) binds only oncogenic KRas, but not HRas or NRas, and thus contributes only to KRAS-driven cancers. How CaM interacts with KRas and how it boosts KRAS cancers are among the most coveted aims in cancer biology. Here we address this question, and further ask: Are there proteins that can substitute for CaM in HRAS- and NRAS-driven cancers? Can scaffolding protein IQGAP1 be one? Data suggest that formation of a CaM–KRas–PI3Kα ternary complex promotes full PI3Kα activation, and thereby potent PI3Kα/Akt/mTOR proliferative signaling. CaM binds PI3Kα at the cSH2 and nSH2 domains of its regulatory p85 subunit; the WW domain of IQGAP1 binds cSH2. This raises the question whether IQGAP1, together with an oncogenic Ras isoform, can partially activate PI3Kα. Activated, membrane-bound PI3Kα generates PIP3. CaM shuttles Akt to the plasma membrane; CaM's release and concomitant phosphoinositide binding stimulates Akt activation. Notably, IQGAP1 directly interacts with, and helps juxtapose, PI3Kα and Akt as well as mTOR. Our mechanistic review aims to illuminate CaM's actions, and help decipher how oncogenic Ras isoforms – not only KRas4B – can activate the PI3Kα/Akt/mTOR pathway at the membrane and innovate drug discovery, including blocking the PI3Kα–IQGAP1 interaction in HRAS- and NRAS-driven cancers.  相似文献   

4.
The mechanism of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in cancer cells is not fully understood. Here, we show that the Akt survival pathway plays an important role in TRAIL resistance in human cancer cells. Specifically, we found that TRAIL treatment activates the Akt survival pathway and that inhibition of this pathway by the PI3K inhibitor LY294002 or knockdown of Akt sensitizes resistant cancer cells to TRAIL. Since Akt is negatively regulated by the tumor suppressor PTEN, we examined the TRAIL sensitivity in PTEN knockdown mouse prostate epithelial cells and found that PTEN−/− cells are more resistant than PTEN+/+ cells while the sensitivity of PTEN+/− cells fell in between. Further, we showed that overexpression of a mutant PTEN confers TRAIL resistance in PTEN+/+ cells, supporting a role of PTEN in TRAIL sensitivity. In TRAIL resistant breast T47D cells, overexpression of the mutant PTEN further increased their resistance to TRAIL. Taken together, our data indicate that inactivation of functional PTEN and the consequent activation of the Akt pathway prevents TRAIL-induced apoptosis, leading to TRAIL resistance. Therefore, our results suggest that TRAIL resistance can be overcome by targeting PTEN or the Akt survival pathway in cancer cells.  相似文献   

5.
6.
Pten dose dictates cancer progression in the prostate   总被引:4,自引:0,他引:4       下载免费PDF全文
Complete inactivation of the PTEN tumor suppressor gene is extremely common in advanced cancer, including prostate cancer (CaP). However, one PTEN allele is already lost in the vast majority of CaPs at presentation. To determine the consequence of PTEN dose variations on cancer progression, we have generated by homologous recombination a hypomorphic Pten mouse mutant series with decreasing Pten activity: Ptenhy/+ > Pten+/− > Ptenhy/− (mutants in which we have rescued the embryonic lethality due to complete Pten inactivation) > Pten prostate conditional knockout (Ptenpc) mutants. In addition, we have generated and comparatively analyzed two distinct Ptenpc mutants in which Pten is inactivated focally or throughout the entire prostatic epithelium. We find that the extent of Pten inactivation dictate in an exquisite dose-dependent fashion CaP progression, its incidence, latency, and biology. The dose of Pten affects key downstream targets such as Akt, p27Kip1, mTOR, and FOXO3. Our results provide conclusive genetic support for the notion that PTEN is haploinsufficient in tumor suppression and that its dose is a key determinant in cancer progression.  相似文献   

7.
Alternative polyadenylation leads to mRNAs with variable 3′ ends. Since a 3′-untranslated region (3′-UTR) often contains cis elements that impact stability or localization of mRNA or translation, selection of poly(A) sites in a 3′-UTR is regulated in mammalian cells. However, the molecular basis for alternative poly(A) site selection within a 3′-UTR has been unclear. Here we show involvement of cleavage factor Im (CFIm) in poly(A) site selection within a 3′-UTR. CFIm is a heterodimeric 3′ end-processing complex, which functions to assemble other processing factors on pre-mRNA in vitro. We knocked down 25 kDa subunit of CFIm (CFIm25) in HeLa cells and analyzed alternative poly(A) site selection of TIMP-2, syndecan2, ERCC6 and DHFR genes by northern blotting. We observed changes in the distribution of mRNAs in CFIm25 depleted cells, suggesting a role for CFIm in alternative poly(A) site selection. Furthermore, tissue specific analysis demonstrated that the CFIm25 gene gave rise to 1.1, 2.0 and 4.6 kb mRNAs. The 4.6 kb mRNA was ubiquitously expressed, while the 1.1 and 2.0 kb mRNAs were expressed in a tissue specific manner. We found three likely poly(A) sites in the CFIm25 3′-UTR, suggesting alternative polyadenylation. Our results indicate that alternative poly(A) site selection is a well-regulated process in vivo.  相似文献   

8.
Cowden syndrome (CS) is a difficult-to-recognize multiple hamartoma syndrome with high risks of breast, thyroid, and other cancers. Germline mutations in PTEN on 10q23 were found to cause 85% of CS when accrued from tertiary academic centers, but prospective accrual from the community over the last 12 years has revealed a 25% PTEN mutation frequency. PTEN is the phosphatase that has been implicated in a heritable cancer syndrome and subsequently in multiple sporadic cancers and developmental processes. PTEN antagonizes the AKT1/PI3K signaling pathway and has roles in cell cycle, migration, cell polarity, and apoptosis. We report that 8 of 91 (8.8%) unrelated CS individuals without germline PTEN mutations carried 10 germline PIK3CA mutations (7 missense, 1 nonsense, and 2 indels) and 2 (2.2%) AKT1 mutations. These mutations result in significantly increased P-Thr308-AKT and increased cellular PIP3. Our observations suggest that PIK3CA and AKT1 are CS susceptibility genes.  相似文献   

9.
10.

Background

Dysregulated PI3K/Akt signaling occurs commonly in breast cancers and is due to HER2 amplification, PI3K mutation or PTEN inactivation. The objective of this study was to determine the role of Akt activation in breast cancer as a function of mechanism of activation and whether inhibition of Akt signaling is a feasible approach to therapy.

Methodology/Principal Findings

A selective allosteric inhibitor of Akt kinase was used to interrogate a panel of breast cancer cell lines characterized for genetic lesions that activate PI3K/Akt signaling: HER2 amplification or PI3K or PTEN mutations in order to determine the biochemical and biologic consequences of inhibition of this pathway. A variety of molecular techniques and tissue culture and in vivo xenograft models revealed that tumors with mutational activation of Akt signaling were selectively dependent on the pathway. In sensitive cells, pathway inhibition resulted in D-cyclin loss, G1 arrest and induction of apoptosis, whereas cells without pathway activation were unaffected. Most importantly, the drug effectively inhibited Akt kinase and its downstream effectors in vivo and caused complete suppression of the growth of breast cancer xenografts with PI3K mutation or HER2 amplification, including models of the latter selected for resistance to Herceptin. Furthermore, chronic administration of the drug was well-tolerated, causing only transient hyperglycemia without gross toxicity to the host despite the pleiotropic normal functions of Akt.

Conclusions/Significance

These data demonstrate that breast cancers with PI3K mutation or HER2 amplification are selectively dependent on Akt signaling, and that effective inhibition of Akt in tumors is feasible and effective in vivo. These findings suggest that direct inhibition of Akt may represent a therapeutic strategy for breast and other cancers that are addicted to the pathway including tumors with resistant to Herceptin.  相似文献   

11.

Background

The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood, though risk factors include human papillomavirus (HPV). Disruption of HER/PTEN/Akt pathway is present in many cancers; however there is little information on its function in PSCC. We investigated HER family receptors and phosphatase and tension homolog (PTEN) in HPV-positive and negative PSCC and its impact on Akt activation using immunohistochemistry and fluorescent in situ hybridisation (FISH).

Methodology/Principal Findings

148 PSCCs were microarrayed and immunostained for phosphorylated EGFR (pEGFR), HER2, HER3, HER4, phosphorylated Akt (pAkt), Akt1 and PTEN proteins. EGFR and PTEN gene status were also evaluated using FISH. HPV presence was assessed by PCR. pEGFR expression was detected significantly less frequently in HPV-positive than HPV-negative tumours (p = 0.0143). Conversely, HER3 expression was significantly more common in HPV-positive cases (p = 0.0128). HER4, pAkt, Akt and PTEN protein expression were not related to HPV. HER3 (p = 0.0054) and HER4 (p = 0.0002) receptors significantly correlated with cytoplasmic Akt1 immunostaining. All three proteins positively correlated with tumour grade (HER3, p = 0.0029; HER4, p = 0.0118; Akt1, p = 0.0001). pEGFR expression correlated with pAkt but not with tumour grade or stage. There was no EGFR gene amplification. HER2 was not detected. PTEN protein expression was reduced or absent in 62% of tumours but PTEN gene copy loss was present only in 4% of PSCCs.

Conclusions/Significance

EGFR, HER3 and HER4 but not HER2 are associated with penile carcinogenesis. HPV-negative tumours tend to express significantly more pEGFR than HPV-positive cancers and this expression correlates with pAkt protein, indicating EGFR as an upstream regulator of Akt signalling in PSCC. Conversely, HER3 expression is significantly more common in HPV-positive cases and positively correlates with cytoplasmic Akt1 expression. HER4 and PTEN protein expression are not related to HPV infection. Our results suggest that PSCC patients could benefit from therapies developed to target HER receptors.  相似文献   

12.
3′-Untranslated region (UTR) shortening of mRNAs via alternative polyadenylation (APA) has important ramifications for gene expression. By using proximal APA sites and switching to shorter 3′-UTRs, proliferating cells avoid miRNA-mediated repression. Such APA and 3′-UTR shortening events may explain the basis of some of the proto-oncogene activation cases observed in cancer cells. In this study, we investigated whether 17 β-estradiol (E2), a potent proliferation signal, induces APA and 3′-UTR shortening to activate proto-oncogenes in estrogen receptor positive (ER+) breast cancers. Our initial probe based screen of independent expression arrays suggested upregulation and 3′-UTR shortening of an essential regulator of DNA replication, CDC6 (cell division cycle 6), upon E2 treatment. We further confirmed the E2- and ER-dependent upregulation and 3′UTR shortening of CDC6, which lead to increased CDC6 protein levels and higher BrdU incorporation. Consequently, miRNA binding predictions and dual luciferase assays suggested that 3′-UTR shortening of CDC6 was a mechanism to avoid 3′-UTR-dependent negative regulations. Hence, we demonstrated CDC6 APA induction by the proliferative effect of E2 in ER+ cells and provided new insights into the complex regulation of APA. E2-induced APA is likely to be an important but previously overlooked mechanism of E2-responsive gene expression.  相似文献   

13.
The tumor suppressor PTEN is a lipid phosphatase that is found mutated in different types of human cancers. PTEN suppresses cell proliferation by inhibiting the PI3K-Akt signaling pathway at the cell membrane. However, PTEN is also demonstrated to localize in the cell nucleus where it exhibits tumor suppressive activity via a different, unknown mechanism. In this study we report that PTEN also localizes to the nucleolus and that nucleolar PTEN plays an important role in regulating nucleolar homeostasis and maintaining nucleolar morphology. Overexpression of nuclear PTEN in PTEN null cells inhibits Akt phosphorylation and reduces cell size. Knockdown of PTEN in PTEN positive cells leads to nucleolar morphologic changes and an increase in the proportion of cells with a greater number of nucleoli. In addition, knockdown of PTEN in PTEN positive cells increased ribosome biogenesis. These findings expand current understanding of function and relevance of nuclear localized PTEN and provide a foundation for the development of novel therapies targeting PTEN.  相似文献   

14.
15.
Constitutively activated MAPK and AKT signaling pathways are often found in solid tumors and leukemias. PTEN is one of the tumor suppressors that are frequently found deficient in patients with late-stage cancers or leukemias. In this study we demonstrate that a MAPK inhibitor, PD98059, inhibits both AKT and ERK phosphorylation in a human myeloid leukemia cell line (TF-1), but not in PTEN-deficient leukemia cells (TF-1a). Ectopic expression of wild-type PTEN in myeloid leukemia cells restored cytokine responsiveness at physiological concentrations of GM-CSF (<0.02 ng/mL) and significantly improved cell sensitivity to MAPK inhibitor. We also found that Early Growth Response 1 (EGR1) was constitutively over-expressed in cytokine-independent TF-1a cells, and ectopic expression of PTEN down-regulated EGR1 expression and restored dynamics of EGR1 expression in response to GM-CSF stimulation. Data from primary bone marrow cells from mice with Pten deletion further supports that PTEN is indispensible for myeloid leukemia cells in response to MAPK inhibitors. Finally, We demonstrate that the absence of EGR1 expression dynamics in response to GM-CSF stimulation is one of the mechanisms underlying drug resistance to MAPK inhibitors in leukemia cells with PTEN deficiency. Our data suggest a novel mechanism of PTEN in regulating expression of EGR1 in hematopoietic cells in response to cytokine stimulation. In conclusion, this study demonstrates that PTEN is dispensable for myeloid leukemia cells in response to MAPK inhibitors, and PTEN regulates EGR1 expression and contributes to the cytokine sensitivity in leukemia cells.  相似文献   

16.
The PTEN hamartoma tumor syndrome (PHTS) is a complex disorder caused by germline inactivating mutations of the tumor suppressor gene PTEN. Loss of PTEN function leads to unimpeded phosphatidylinositol-3′-kinase (PI3K) activity and PI3K-driven cell division. Individuals with PHTS develop benign hamartomas in various tissues and have an increased risk of developing malignant diseases. Notably, no effective therapy currently exists for this disorder. Using both genetic mouse models and pharmacological approaches, we recently demonstrated that PI3K p110α and p110β isoforms play spatially distinct but concerted roles in the skin that are required for the development and maintenance of PHTS. We also show that treatment with a pan-PI3K inhibitor prevents the development of skin PHTS and reverses advanced-stage skin hamartomas in vivo. Here, we report that genetic ablation of only 3 out of 4 p110 alleles is sufficient to block the development of skin hamartomas resulting from the complete loss of Pten in mice. Similar to our findings in skin, we now also show that mammary gland neoplastic lesions can be prevented or reversed upon PI3K inhibition in our PHTS mouse model. Our data suggest a possible route to chemoprevention using reduced doses of PI3K inhibitors for PTEN-deficient carrier patients.  相似文献   

17.
The bcl-2 proto-oncogene is overexpressed in a variety of human cancers and plays an important role in programmed cell death. Recent reports implied that the 3′-untranslated region (3′UTR) functions effectively in the regulation of gene expression. Here, we attempt to assay the ability of triplex forming oligonucleotides (TFOs) to inhibit expression of a target gene in vivo and to examine the potential of the 3′UTR of the bcl-2 proto-oncogene in the regulation of bcl-2 gene expression. To do this, we have developed a novel cellular system that involves transfection of a Doxycyclin inducible expression plasmid containing the bcl-2 ORF and the 3′UTR together with a TFO targeted to the 3′UTR of the bcl-2 proto-oncogene. Phosphorothioate-modified TFO targeted to the 3′UTR of the bcl-2 gene significantly downregulated the expression of the bcl-2 gene in HeLa cells as demonstrated by western blotting. Our results indicate that blocking the functions of the 3′UTR using the TFO can downregulate the expression of the targeted gene, and suggest that triplex strategy is a promising approach for oligonucleotide-based gene therapy. In addition, triplex-based sequence targeting may provide a useful tool for studying the regulation of gene expression.  相似文献   

18.
CSIG inhibits PTEN translation in replicative senescence   总被引:1,自引:0,他引:1  
Using a suppressive subtractive hybridization system, we identified CSIG (cellular senescence-inhibited gene protein; RSL1D1) that was abundant in young human diploid fibroblast cells but declined upon replicative senescence. Overexpression or knockdown of CSIG did not influence p21Cip1 and p16INK4a expressions. Instead, CSIG negatively regulated PTEN and p27Kip1 expressions, in turn promoting cell proliferation. In PTEN-silenced HEK 293 cells and PTEN-deficient human glioblastoma U87MG cells, the effect of CSIG on p27Kip1 expression and cell division was abolished, suggesting that PTEN was required for the role of CSIG on p27Kip1 regulation and cell cycle progression. Investigation into the underlying mechanism revealed that the regulation of PTEN by CSIG was achieved through a translational suppression mechanism. Further study showed that CSIG interacted with PTEN mRNA in the 5′ untranslated region (UTR) and that knockdown of CSIG led to increased luciferase activity of a PTEN 5′ UTR-luciferase reporter. Moreover, overexpression of CSIG significantly delayed the progression of replicative senescence, while knockdown of CSIG expression accelerated replicative senescence. Knockdown of PTEN diminished the effect of CSIG on cellular senescence. Our findings indicate that CSIG acts as a novel regulatory component of replicative senescence, which requires PTEN as a mediator and involves in a translational regulatory mechanism.  相似文献   

19.

Background

PTEN is well known to function as a tumor suppressor that antagonizes oncogenic signaling and maintains genomic stability. The PTEN gene is frequently deleted or mutated in human cancers and the wide cancer spectrum associated with PTEN deficiency has been recapitulated in a variety of mouse models of Pten deletion or mutation. Pten mutations are highly penetrant in causing various types of spontaneous tumors that often exhibit resistance to anticancer therapies including immunotherapy. Recent studies demonstrate that PTEN also regulates immune functionality.

Objective

To understand the multifaceted functions of PTEN as both a tumor suppressor and an immune regulator.

Methods

This review will summarize the emerging knowledge of PTEN function in cancer immunoediting. In addition, the mechanisms underlying functional integration of various PTEN pathways in regulating cancer evolution and tumor immunity will be highlighted.

Results

Recent preclinical and clinical studies revealed the essential role of PTEN in maintaining immune homeostasis, which significantly expands the repertoire of PTEN functions. Mechanistically, aberrant PTEN signaling alters the interplay between the immune system and tumors, leading to immunosuppression and tumor escape.

Conclusion

Rational design of personalized anti-cancer treatment requires mechanistic understanding of diverse PTEN signaling pathways in modulation of the crosstalk between tumor and immune cells.
  相似文献   

20.
PTEN is one of the most frequently mutated genes in malignancies and acts as a powerful tumor suppressor. Tumorigenesis is involved in multiple and complex processes including initiation, invasion, and metastasis. The complexity of PTEN function is partially attributed to PTEN family members such as PTENα and PTENβ. Here, we report the identification of PTENε (also named as PTEN5), a novel N‐terminal‐extended PTEN isoform that suppresses tumor invasion and metastasis. We show that the translation of PTENε/PTEN5 is initiated from the CUG816 codon within the 5′UTR region of PTEN mRNA. PTENε/PTEN5 mainly localizes in the cell membrane and physically associates with and dephosphorylates VASP and ACTR2, which govern filopodia formation and cell motility. We found that endogenous depletion of PTENε/PTEN5 promotes filopodia formation and enhances the metastasis capacity of tumor cells. Overall, we identify a new isoform of PTEN with distinct subcellular localization and molecular function compared to the known members of the PTEN family. These findings advance our current understanding of the importance and diversity of PTEN functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号