首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RNA helicases and abiotic stress   总被引:5,自引:1,他引:4  
  相似文献   

3.
The long unwinding road of RNA helicases   总被引:4,自引:0,他引:4  
RNA helicases comprise a large family of enzymes that are thought to utilize the energy of NTP binding and hydrolysis to remodel RNA or RNA-protein complexes, resulting in RNA duplex strand separation, displacement of proteins from RNA molecules, or both. These functions of RNA helicases are required for all aspects of cellular RNA metabolism, from bacteria to humans. We provide a brief overview of the functions of RNA helicases and highlight some of the recent key advances that have contributed to our current understanding of their biological function and mechanism of action.  相似文献   

4.
RNA helicases--one fold for many functions   总被引:4,自引:0,他引:4  
RNA helicases are a large group of enzymes that function in virtually all aspects of RNA metabolism. Although RNA helicases share a highly conserved structure, different enzymes display a wide array of biochemical activities, including RNA duplex unwinding, protein displacement from RNA and strand annealing. Recent structural and functional studies have started to illuminate the mechanisms by which this remarkable diversity of functions can be conducted by the conserved helicase fold.  相似文献   

5.
DEAH helicases participate in pre‐messenger RNA splicing and ribosome biogenesis. The structure of yeast Prp43p‐ADP reveals the homology of DEAH helicases to DNA helicases and the presence of an oligonucleotide‐binding motif. A β‐hairpin from the second RecA domain is wedged between two carboxy‐terminal domains and blocks access to the occluded RNA binding site formed by the RecA domains and a C‐terminal domain. ATP binding and hydrolysis are likely to induce conformational changes in the hairpin that are important for RNA unwinding or ribonucleoprotein remodelling. The structure of Prp43p provides the framework for functional and genetic analysis of all DEAH helicases.  相似文献   

6.
Pre-mRNA splicing requires the activities of several ATPases from the DEAH-box, DEAD-box and Ski2-like helicase families to control conformational rearrangements within the spliceosome. Recent findings indicate that several spliceosomal helicases can act at multiple stages of the splicing reaction, and information on how those multiple actions are controlled are emerging. The recently solved crystal structure of the DEAH-box helicase Prp43 provides novel insights into the similarities and differences between the three helicase families. Here we discuss the potential family-specific mechanisms of spliceosomal RNA helicases and their regulation.  相似文献   

7.
RNA helicases are essential for virtually all cellular processes, however, their regulation is poorly understood. The activities of eight RNA helicases are required for pre-mRNA splicing. Amongst these, Brr2p is unusual in having two helicase modules, of which only the amino-terminal helicase domain appears to be catalytically active. Using genetic and biochemical approaches, we investigated interaction of the carboxy-terminal helicase module, in particular the carboxy-terminal Sec63-2 domain, with the splicing RNA helicase Prp16p. Combining mutations in BRR2 and PRP16 suppresses or enhances physical interaction and growth defects in an allele-specific manner, signifying functional interactions. Notably, we show that Brr2p Sec63-2 domain can modulate the ATPase activity of Prp16p in vitro by interfering with its ability to bind RNA. We therefore propose that the carboxy-terminal helicase module of Brr2p acquired a regulatory function that allows Brr2p to modulate the ATPase activity of Prp16p in the spliceosome by controlling access to its RNA substrate/cofactor.  相似文献   

8.
9.
10.
11.
12.
13.
RNAs are functionally diverse macromolecules whose proper functions rely strictly upon their correct tertiary structures. However, because of their high structural flexibility, correct folding of RNAs is challenging and slow. Therefore, cells and viruses encode a variety of RNA remodeling proteins, including helicases and RNA chaperones. In RNA viruses, these proteins are believed to play pivotal roles in all the processes involving viral RNAs during the life cycle. RNA helicases have been studied extensively for decades, whereas RNA chaperones, particularly virus-encoded RNA chaperones, are often overlooked. This review describes the activities of RNA chaperones encoded by RNA viruses, particularly the ones identified and characterized in recent years, and the functions of these proteins in different steps of viral life cycles, and presents an overview of this unique group of proteins.  相似文献   

14.
应激颗粒(stress granules, SGs)是细胞在环境压力刺激下停止蛋白质翻译后,mRNA与多种细胞蛋白组装而成的胞质颗粒结构.RNA 解旋酶家族作为生物体内普遍存在的一类高度保守的蛋白质酶类,参与了RNA代谢各个环节,近年来其家族成员被陆续发现是一类新的SG重要组分.本文综述了RNA解旋酶参与应激颗粒形成过程,RNA解旋酶家族蛋白的结构和其参与应激颗粒形成的研究进展.  相似文献   

15.
DEAD-box helicases related to the Drosophila protein Vasa (also known as Ddx4) are found throughout the animal kingdom. They have been linked to numerous processes in gametogenesis, germ cell specification, and stem cell biology, and alterations in Vasa expression are associated with malignancy of tumor cells and with some human male infertility syndromes. Experimental results indicating how Vasa contributes to all these different cellular and developmental processes are discussed, using examples from planarians, Caenorhabditis elegans, Drosophila, sea urchin, zebrafish, Xenopus, mouse, and human. Molecular, cellular, and developmental functions of Vasa and its orthologs are reviewed in this article. Evidence linking Vasa to translational regulation, to biogenesis of small RNAs, and to chromosome condensation is examined. Finally, potential overlapping functions between Vasa and related DEAD-box helicases (Belle, or Ddx3, and DEADSouth, or Ddx25) are explored. This article is part of a Special Issue entitled: The biology of RNA helicases — Modulation for life.  相似文献   

16.
RNA helicases of the DExD/H-box superfamily are critically involved in all RNA-related processes. No crystal structures of human DExH-box domains had been determined previously, and their structures were difficult to predict owing to the low level of homology among DExH-motif-containing proteins from diverse species. Here we present the crystal structures of the conserved domain 1 of the DEIH-motif-containing helicase DHX9 and of the DEAD-box helicase DDX20. Both contain a RecA-like core, but DHX9 differs from DEAD-box proteins in the arrangement of secondary structural elements and is more similar to viral helicases such as NS3. The N-terminus of the DHX9 core contains two long α-helices that reside on the surface of the core without contributing to nucleotide binding. The RNA-polymerase-II-interacting minimal transactivation domain sequence forms an extended loop structure that resides in a hydrophobic groove on the surface of the DEIH domain. DHX9 lacks base-selective contacts and forms an unspecific but important stacking interaction with the base of the bound nucleotide, and our biochemical analysis confirms that the protein can hydrolyze ATP, guanosine 5′-triphosphate, cytidine 5′-triphosphate, and uridine 5′-triphosphate. Together, these findings allow the localization of functional motifs within the three-dimensional structure of a human DEIH helicase and show how these enzymes can bind nucleotide with high affinity in the absence of a Q-motif.  相似文献   

17.
Y RNAs are small 'cytoplasmic' RNAs which are components of the Ro ribonucleoprotein (RNP) complex. The core of this complex, which is found in the cell nuclei of higher eukaryotes as well as the cytoplasm, is composed of a complex between the 60 kDa Ro protein and Y RNAs. Human cells contain four distinct Y RNAs (Y1, Y3, Y4 and Y5), while other eukaryotes contain a variable number of Y RNA homologues. When detected in a particular species, the Ro RNP has been present in every cell type within that particular organism. This characteristic, along with its high conservation among vertebrates, suggests an important function for Ro RNP in cellular metabolism; however, this function has not yet been definitively elucidated. In order to identify conserved features of Y RNA sequences and structures which may be directly involved in Ro RNP function, a phylogenetic comparative analysis of Y RNAs has been performed. Sequences of Y RNA homologues from five vertebrate species have been obtained and, together with previously published Y RNA sequences, used to predict Y RNA secondary structures. A novel RNA secondary structure comparison algorithm, the suboptimal RNA analysis program, has been developed and used in conjunction with available algorithms to find phylogenetically conserved secondary structure models for YI, Y3 and Y4 RNAs. Short, conserved sequences within the Y RNAs have been identified and are invariant among vertebrates, consistent with a direct role for Y RNAs in Ro function. A subset of these are located wholly or partially in looped regions in the Y3 and Y4 RNA predicted model structures, in accord with the possibility that these Y RNAs base pair with other cellular nucleic acids or are sites of interaction between the Ro RNP and other macromolecules.  相似文献   

18.
DEAD/DEAH box RNA helicases play essential roles in numerous RNA metabolic processes, such as mRNA translation, pre-mRNA splicing, ribosome biogenesis, and double-stranded RNA sensing. Herein we show that a recently characterized DEAD/DEAH box RNA helicase, DHX33, promotes mRNA translation initiation. We isolated intact DHX33 protein/RNA complexes in cells and identified several ribosomal proteins, translation factors, and mRNAs. Reduction of DHX33 protein levels markedly reduced polyribosome formation and caused the global inhibition of mRNA translation that was rescued with wild-type DHX33 but not helicase-defective DHX33. Moreover, we observed an accumulation of mRNA complexes with the 80S ribosome in the absence of functional DHX33, consistent with a stalling in initiation, and DHX33 more preferentially promoted structured mRNA translation. We conclude that DHX33 functions to promote elongation-competent 80S ribosome assembly at the late stage of mRNA translation initiation. Our results reveal a newly recognized function of DHX33 in mRNA translation initiation, further solidifying its central role in promoting cell growth and proliferation.  相似文献   

19.
Viral RNA represents a pattern molecule that can be recognized by RNA sensors in innate immunity. Humans and mice possess cytoplasmic DNA/RNA sensors for detecting viral replication. There are a number of DEAD (Asp‐Glu‐Ala‐Asp; DExD/H) box‐type helicases in mammals, among which retinoic acid‐inducible gene 1 (RIG‐I) and melanoma differentiation‐associated protein 5 (MDA50) are indispensable for RNA sensing; however, they are functionally supported by a number of sensors that directly bind viral RNA or replicative RNA intermediates to convey signals to RIG‐I and MDA5. Some DEAD box helicase members recognize DNA irrespective of the origin. These sensors transmit IFN‐inducing signals through adaptors, including mitochondrial antiviral signaling. Viral double‐stranded RNAs are reportedly sensed by the helicases DDX1, DDX21, DHX36, DHX9, DDX3, DDX41, LGP2 and DDX60, in addition to RIG‐I and MDA5, and induce type I IFNs, thereby blocking viral replication. Humans and mice have all nucleic acid sensors listed here. In the RNA sensing system in chicken, it was found in the present study that most DEAD box helicases are conserved; however, DHX9 is genetically deficient in addition to reported RIG‐I. Based on the current genome databases, similar DHX9 deficiency was observed in ducks and several other bird species. Because chicken, but not duck, was found to be deficient in RIG‐I, the RNA‐sensing system of chicken lacks RIG‐I and DHX9 and is thus more fragile than that of duck or mammal. DHX9 may generally compensate for the function of RIG‐I and deficiency of DHX9 possibly participates in exacerbations of viral infection such as influenza in chickens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号