首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication protein A phosphorylation and the cellular response to DNA damage   总被引:12,自引:0,他引:12  
Binz SK  Sheehan AM  Wold MS 《DNA Repair》2004,3(8-9):1015-1024
Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair). RPA is a single-stranded DNA-binding protein composed of subunits of 70-, 32- and 14-kDa. RPA binds ssDNA with high affinity and interacts specifically with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA to become hyper-phosphorylated. Current data indicates that hyper-phosphorylation causes a change in RPA conformation that down-regulates activity in DNA replication but does not affect DNA repair processes. This suggests that the role of RPA phosphorylation in the cellular response to DNA damage is to help regulate DNA metabolism and promote DNA repair.  相似文献   

2.
Human DNA mismatch repair (MMR) proteins correct DNA errors and regulate cellular response to DNA damage by signaling apoptosis. Mutations of MMR genes result in genomic instability and cancer development. Nonetheless, how MMR proteins are regulated has not yet been determined. While hMLH1, hPMS2, and hMLH3 are known to participate in MMR, the function of another member of MutL-related proteins, hPMS1, remains unclear. Here we show that DNA damage induces the accumulation of hPMS1, hPMS2, and hMLH1 through ataxia-telangiectasia-mutated (ATM)-mediated protein stabilization. The subcellular localization of PMS proteins is also regulated during DNA damage, which induces nuclear localization of hPMS1 and hPMS2 in an hMLH1-dependent manner. The induced levels of hMLH1 and hPMS1 are important for the augmentation of p53 phosphorylation by ATM in response to DNA damage. These observations identify hMutL proteins as regulators of p53 response and demonstrate for the first time a function of hMLH1-hPMS1 complex in controlling the DNA damage response.  相似文献   

3.
Checkpoint pathways regulate genomic integrity in part by blocking anaphase until all chromosomes have been completely replicated, repaired, and correctly aligned on the spindle. In Saccharomyces cerevisiae, DNA damage and mono-oriented or unattached kinetochores trigger checkpoint pathways that bifurcate to regulate both the metaphase to anaphase transition and mitotic exit. The sensor-associated kinase, Mec1, phosphorylates two downstream kinases, Chk1 and Rad53. Activation of Chk1 and Rad53 prevents anaphase and causes inhibition of the mitotic exit network. We have previously shown that the PKA pathway plays a role in blocking securin and Clb2 destruction following DNA damage. Here we show that the Mec1 DNA damage checkpoint regulates phosphorylation of the regulatory (R) subunit of PKA following DNA damage and that the phosphorylated R subunit has a role in restraining mitosis following DNA damage. In addition we found that proteins known to regulate PKA in response to nutrients and stress either by phosphorylation of the R subunit or regulating levels of cAMP are required for the role of PKA in the DNA damage checkpoint. Our data indicate that there is cross-talk between the DNA damage checkpoint and the proteins that integrate nutrient and stress signals to regulate PKA.  相似文献   

4.
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.  相似文献   

5.
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity because they have the potential to cause mutations, chromosomal rearrangements and genomic instability. The cellular response to DSBs is orchestrated by signal transduction pathways, known as DNA damage checkpoints, which are conserved from yeasts to humans. These pathways can sense DNA damage and transduce this information to specific cellular targets, which in turn regulate cell cycle transitions and DNA repair. The mammalian protein kinases ATM and ATR, as well as their budding yeast corresponding orthologs Tel1 and Mec1, act as master regulators of the checkpoint response to DSBs. Here, we review the early steps of DSB processing and the role of DNA-end structures in activating ATM/Tel1 and ATR/Mec1 in an orderly and reciprocal manner.  相似文献   

6.
A prerequisite for maintaining genome stability in all cell types is the accurate repair and efficient signaling of DNA double strand breaks (DSBs). It is believed that DSBs are initially detected by damage sensors that trigger the activation of transducing kinases. These transducers amplify the damage signal, which is then relayed to effector proteins, which regulate the progression of the cell cycle, DNA repair and apoptosis. Errors in the execution of the repair and/or signaling of DSBs can give rise to multi-systemic disorders characterized by tissue degeneration, infertility, immune system dysfunction, age-related pathologies and cancer. This special Spotlight issue of Cell Cycle highlights recent advances in our understanding of the biology and significance of the DNA damage response. A range of issues are addressed including mechanistic ones: what is the aberrant DNA structure that triggers the activation of the checkpoint - how does chromatin structure influence the recruitment of repair and checkpoint proteins- how does chromosomal instability contribute to the evolution of cancer. In addition, questions related to the physiology of the DNA damage response in normal and abnormal cells is explored: what is the in vivo consequence of altering specific amino acids in a DNA damage sensor- does DNA damage accumulation in stem cells cause aging- how is neurodegeneration linked to deficiencies in specific DNA repair pathways, and finally, what is the biological basis for selection of aberrant DNA damage responses in cancer cells?  相似文献   

7.
To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to "dedifferentiate" into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived from, mimic hESC in their ROS levels, cell cycle profiles, repair protein expression and NHEJ repair efficacy, indicating reprogramming of the DNA repair pathways. Human iPSC however show a partial apoptotic response to irradiation, compared to hESC. We suggest that DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming.  相似文献   

8.
A new approach to cancer and new methods in examining rare human chromosome breakage syndromes have brought to light complex interactions between different pathways involved in damage response, cell cycle checkpoint control and DNA repair. The genes affected in these different syndromes are involved in networks of processes that respond to DNA damage and prevent chromosomal aberrations during the cell cycle. The genes involved include the ATM, ATR, FA-associated genes, NBS1 and the cancer susceptibility genes BRCA1 and BRCA2. Chromosomal instability is a common feature of many human cancers and most of the instability syndromes, characterized by sensitivity to different types of DNA damage, also show increased cancer susceptibility. Better understanding of these syndromes and their links with familial cancer provide new insight into associations between defects in DNA damage response, cell cycle control, DNA repair and cancer. Understanding the damage response repair networks that these studies are revealing will have important implications for the development of cancer management and treatment.  相似文献   

9.
DNA damage tumor suppressor genes and genomic instability   总被引:9,自引:0,他引:9  
Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and the development of cancer in multicellular organisms. The protein kinases ATM and ATR, as well as their downstream substrates Chk1 and Chk2, are central players in checkpoint activation in response to DNA damage. Histone H2AX, ATRIP, as well as the BRCT-motif-containing molecules 53BP1, MDC1, and BRCA1 function as molecular adapters or mediators in the recruitment of ATM or ATR and their targets to sites of DNA damage. The increased chromosomal instability and tumor susceptibility apparent in mutant mice deficient in both p53 and either histone H2AX or proteins that contribute to the nonhomologous end-joining mechanism of DNA repair indicate that DNA damage checkpoints play a pivotal role in tumor suppression.  相似文献   

10.
Requirement of the MRN complex for ATM activation by DNA damage   总被引:34,自引:0,他引:34  
The ATM protein kinase is a primary activator of the cellular response to DNA double-strand breaks (DSBs). In response to DSBs, ATM is activated and phosphorylates key players in various branches of the DNA damage response network. ATM deficiency causes the genetic disorder ataxia-telangiectasia (A-T), characterized by cerebellar degeneration, immunodeficiency, radiation sensitivity, chromosomal instability and cancer predisposition. The MRN complex, whose core contains the Mre11, Rad50 and Nbs1 proteins, is involved in the initial processing of DSBs. Hypomorphic mutations in the NBS1 and MRE11 genes lead to two other genomic instability disorders: the Nijmegen breakage syndrome (NBS) and A-T like disease (A-TLD), respectively. The order in which ATM and MRN act in the early phase of the DSB response is unclear. Here we show that functional MRN is required for ATM activation, and consequently for timely activation of ATM-mediated pathways. Collectively, these and previous results assign to components of the MRN complex roles upstream and downstream of ATM in the DNA damage response pathway and explain the clinical resemblance between A-T and A-TLD.  相似文献   

11.
Relocalization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein reorganization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by subcellular destination enables the identification of pathways that respond to replication stress. We analysed pairwise combinations of GFP fusions and gene deletion mutants to define and order two previously unknown DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways.  相似文献   

12.
Eukaryotic cells have evolved DNA damage checkpoints in response to genome damage. They delay the cell cycle and activate repair mechanisms. The kinases at the heart of these pathways and the accessory proteins, which localize to DNA lesions and regulate kinase activation, are conserved from yeast to mammals. For Saccharomyces cerevisiae Rad9, a key adaptor protein in DNA damage checkpoint pathways, no clear human ortholog has yet been described in mammals. Rad9, however, shares localized homology with both human BRCA1 and 53BP1 since they all contain tandem C-terminal BRCT (BRCA1 C-terminal) motifs. 53BP1 is also a key mediator in DNA damage signaling required for cell cycle arrest, which has just been reported to possess a tandem Tudor repeat upstream of the BRCT motifs. Here we show that the major globular domain upstream of yeast Rad9 BRCT domains is structurally extremely similar to the Tudor domains recently resolved for 53BP1 and SMN. By expressing several fragments encompassing the Tudor-related motif and characterizing them using various physical methods, we isolated the independently folded unit for yeast Rad9. As in 53BP1, the domain corresponds to the SMN Tudor motif plus the contiguous HCA predicted structure region at the C terminus. These domains may help to further elucidate the structural and functional features of these two proteins and improve knowledge of the proteins involved in DNA damage.  相似文献   

13.
随着对DNA损伤修复基因研究的深入,其信号转导路径及调控网络也进一步明了,调控DNA损伤修复基因的微小RNA(miRNA)也越来越多地被认识和发现。简要综述了DNA损伤途径中调控主要的损伤修复基因的miRNA,有助于深入阐明DNA损伤修复机制,为开发抗辐射药物和临床上DNA损伤修复异常相关肿瘤的基因治疗提供新的靶点。  相似文献   

14.
DNA双链断裂(DNA double-strand breaks, DSBs)是威胁基因组完整性和细胞存活的最有害的DNA损伤类型。同源重组(homologous recombination,HR)和非同源末端连接(non-homologous end joining,NHEJ)是修复DNA双链断裂的两种主要途径。DSB修复涉及到损伤部位修复蛋白的募集和染色质结构的改变。在DNA双链断裂诱导下,染色质结构的动态变化在时间和空间上受到严格调控,进而对DNA双链断裂修复过程进行精细调节。特定的染色质修饰形成利于修复的染色质状态,有助于DNA双链断裂修复机器的招募、修复途径的选择和DNA损伤检查点的活化;其中修复途径的选择对于基因组稳定性至关重要。修复不当或失败可导致基因组不稳定性,甚至促进肿瘤的发生。本文综述了染色质结构和染色质修饰的动态变化在DSB修复中的重要作用。此外,文章还总结了在癌症治疗中靶向关键染色质调控因子在基因组稳定性维持、肿瘤发生发展以及潜在临床应用价值等方面的进展。  相似文献   

15.
The human APOBEC3 family of cytidine deaminases constitutes a cellular intrinsic defense mechanism that is effective against a range of viruses and retro-elements. While it is well-established that these enzymes are powerful mutators of viral DNA, the possibility that their activity could threaten the integrity of the host genome has only recently begun to be investigated. Here, we discuss the implications of new evidence suggesting that APOBEC3 proteins can mediate the deamination of cellular DNA. The maintenance of genomic integrity in the face of this potential off-target activity must require high-fidelity DNA repair and strict regulation of APOBEC3 gene expression and enzyme activity. Conversely, the ability of specific members of the APOBEC3 family to activate DNA damage signaling pathways might also reflect another way that these proteins contribute to the host immune response.Key words: APOBEC3, cytidine deaminase, AID, uracil-DNA glycosylase, DNA damage, hypermutation, genomic instability, cancer  相似文献   

16.
Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies.  相似文献   

17.
Telomere dysfunction in genome instability syndromes   总被引:7,自引:0,他引:7  
Telomeres are nucleoprotein complexes located at the end of eukaryotic chromosomes. They have essential roles in preventing terminal fusions, protecting chromosome ends from degradation, and in chromosome positioning in the nucleus. These terminal structures consist of a tandemly repeated DNA sequence (TTAGGG in vertebrates) that varies in length from 5 to 15 kb in humans. Several proteins are attached to this telomeric DNA, some of which are also involved in different DNA damage response pathways, including Ku80, Mre11, NBS and BLM, among others. Mutations in the genes encoding these proteins cause a number of rare genetic syndromes characterized by chromosome and/or genetic instability and cancer predisposition. Deletions or mutations in any of these genes may also cause a telomere defect resulting in accelerated telomere shortening, lack of end-capping function, and/or end-to-end chromosome fusions. This telomere phenotype is also known to promote chromosomal instability and carcinogenesis. Therefore, it is essential to understand the interplay between telomere biology and genome stability. This review is focused in the dual role of chromosome fragility proteins in telomere maintenance.  相似文献   

18.
Recombinational DNA repair and human disease   总被引:27,自引:0,他引:27  
  相似文献   

19.
The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号