首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copine 1 (CPNE1) is a well-known phospholipid binding protein in plasma membrane of various cell types. In brain cells, CPNE1 is closely associated with AKT signaling pathway, which is important for neural stem cell (NSC) functions during brain development. Here, we investigated the role of CPNE1 in the regulation of brain NSC functions during brain development and determined its underlying mechanism. In this study, abundant expression of CPNE1 was observed in neural lineage cells including NSCs and immature neurons in human. With mouse brain tissues in various developmental stages, we found that CPNE1 expression was higher at early embryonic stages compared to postnatal and adult stages. To model developing brain in vitro, we used primary NSCs derived from mouse embryonic hippocampus. Our in vitro study shows decreased proliferation and multi-lineage differentiation potential in CPNE1 deficient NSCs. Finally, we found that the deficiency of CPNE1 downregulated mTOR signaling in embryonic NSCs. These data demonstrate that CPNE1 plays a key role in the regulation of NSC functions through the activation of AKT-mTOR signaling pathway during brain development.  相似文献   

2.
Dbn1 is a newly discovered gene in the drebrin gene family of mice. Previous studies have reported that Dbn1 is specifically expressed in the mouse brain suggesting its potential role in brain development. However, a detailed analysis of Dbn1 expression during mouse brain development has not been demonstrated. Here, we describe the expression pattern of Dbn1 and the coexpression of Dbn1 and actin during the development of the mouse brain from embryonic day 14 (E14) to adulthood and during the differentiation of neural stem cells (NSCs), as determined using immunohistochemistry, double-labeling immunofluorescence, and quantitative real-time polymerase chain reaction. During mouse brain development, Dbn1 expression level was high at E14, attenuated postnatally, reached its highest point at postnatal day 7 (P7), and showed a very low level at adulthood. Imaging data showed that Dbn1 was mainly expressed in the hippocampus, ventricular zone, and cortex, where NSCs are densely distributed, and that the intracellular distribution of Dbn1 was predominantly located in the cytoplasm edges and neurites. Moreover, the signal for colocalization of Dbn1 with actin was intense at E14, P0, and P7, but it was weak at adulthood. During NSC differentiation, Dbn1 mRNA expression increased after the onset of differentiation and reached its highest point at 3 days, followed by a decrease in expression. The imaging data showed that Dbn1 was increasingly expressed in the extending neurites in accordance with the cell morphological changes that occur during differentiation. Furthermore, obvious colocalization signals of Dbn1 with actin were found in the neurites and dendritic spines. Collectively, these results suggest that Dbn1 may play a key role in mouse brain development and may regulate NSC differentiation by filamentous actin.  相似文献   

3.
ObjectiveNeurodevelopmental diseases are common disorders caused by the disruption of essential neurodevelopmental processes. Recent human exome sequencing and genome‐wide association studies have shown that mutations in the subunits of the SWI/SNF (BAF) complex are risk factors for neurodevelopmental diseases. Clinical studies have found that ARID1A (BAF250a) is the most frequently mutated SWI/SNF gene and its mutations lead to mental retardation and microcephaly. However, the function of ARID1A in brain development and its underlying mechanisms still remain elusive.MethodsThe present study used Cre/loxP system to generate an Arid1a conditional knockout mouse line. Cell proliferation, cell apoptosis and cell differentiation of NSPCs were studied by immunofluorescence staining. In addition, RNA‐seq and RT‐PCR were performed to dissect the molecular mechanisms of Arid1a underlying cortical neurogenesis. Finally, rescue experiments were conducted to evaluate the effects of Neurod1 or Fezf2 overexpression on the differentiation of NSPCs in vitro.ResultsConditional knockout of Arid1a reduces cortical thickness in the developing cortex. Arid1a loss of function inhibits the proliferation of radial glial cells, and increases cell death during late cortical development, and leads to dysregulated expression of genes associated with proliferation and differentiation. Overexpression of Neurod1 or Fezf2 in Arid1a cKO NSPCs rescues their neural differentiation defect in vitro.ConclusionsThis study demonstrates for the first time that Arid1a plays an important role in regulating the proliferation and differentiation of NSPCs during cortical development, and proposes several gene candidates that are worth to understand the pathological mechanisms and to develop novel interventions of neurodevelopment disorders caused by Arid1a mutations.  相似文献   

4.
JGP study finds that the C. elegans orthologue of the PIEZO family is a mechanosensitive ion channel that regulates pharyngeal pumping and food sensation.

The PIEZO family of mechanosensitive cation channels has been implicated in a wide variety of physiological processes in mammals and is also associated with human disease. Mammalian genomes encode two family members, known as Piezo1 and Piezo2, but invertebrates such as the nematode Caenorhabditis elegans only possess a single Piezo-related gene (1). The function of the C. elegans orthologue, known as pezo-1, has largely remained obscure, but, in this issue of JGP, Millet et al. reveal that it encodes a bona fide mechanosensitive ion channel that regulates pharyngeal activity (2).Jonathan Millet (left), Valeria Vásquez (center), and colleagues reveal that pezo-1, the sole PIEZO family member in C. elegans, is a mechanosensitive ion channel that regulates pharyngeal pumping and food sensation, particularly when worms are fed with large and stiff bacterial filaments that are difficult to swallow (graphic created with BioRender.com).In 2020, an elegant study demonstrated that pezo-1 controls C. elegans ovulation and fertilization (3). However, explains Valeria Vásquez from the University of Tennessee Health Science Center, whether pezo-1 encodes for a mechanosensitive ion channel was unknown. “PEZO-1 is expressed in many tissues, including the pharynx, which is the organ we decided to concentrate on in our study,” Vásquez says.Muscle cells in the C. elegans pharynx rhythmically contract and relax to pump food into the worm’s intestine. Vásquez and colleagues, including first author Jonathan Millet, found that PEZO-1 is expressed in several different pharyngeal cell types (2), including the gland cells whose secretions lubricate the pharynx, and the proprioceptive NSM neurons that are thought to sense the presence of food within the pharynx lumen and release serotonin to increase the rate of pharyngeal pumping.Millet et al. analyzed pharyngeal pumping in worms lacking pezo-1, as well as in animals expressing a pezo-1 point mutant that, in human Piezo1, increases channel function by slowing channel deactivation and inactivation. Loss or gain of pezo-1 function had surprisingly little effect on pharyngeal activity, causing only mild alterations in the duration and frequency of pumping induced by serotonin, and more obvious effects when challenged with high osmolarity solutions.Worms cultured in the laboratory are usually fed a diet of small, easily ingested Escherichia coli cells and, both loss and gain of pezo-1 function increased the pharynx’s response to this type of food. In their natural habitat, however, C. elegans encounter bacteria of various shapes and sizes, some of which might be harder to swallow. “It occurred to me that it might make a difference if we fed the worms with bacteria that were stiffer and longer,” Vásquez says.The researchers therefore provided their pezo-1 mutants with E. coli treated with cephalexin, an antibiotic that inhibits cell separation and causes the bacteria to form long, spaghetti-like filaments. Compared with wild-type worms fed with this diet, pharyngeal activity was markedly enhanced by the gain-of-function pezo-1 mutant, but substantially reduced in the absence of pezo-1, almost as if the worms were “choking” on the bacterial filaments.Crucially, by performing patch-clamp experiments on both cultured C. elegans cells and insect cells expressing recombinant pezo-1, Millet et al. confirmed that PEZO-1 is, indeed, a mechanosensitive ion channel. However, it remains to be seen exactly how PEZO-1 helps the pharynx sense the physical parameters of food and adjust its pumping activity accordingly. One possibility is that the channel acts within the proprioceptive neurons to regulate the release of serotonin.Intriguingly, the Drosophila PIEZO orthologue controls feeding behavior in flies (4). “However, it’s not known which mechanosensitive channels are important in the pharyngeal system of mammals,” Vásquez says. “Our studies in C. elegans could therefore open an opportunity to understand food sensation in humans.”  相似文献   

5.
6.
Although mechanoelectrical transducer (MET) channels have been extensively studied, uncertainty persists about their molecular architecture and single-channel conductance. We made electrical measurements from mouse cochlear outer hair cells (OHCs) to reexamine the MET channel conductance comparing two different methods. Analysis of fluctuations in the macroscopic currents showed that the channel conductance in apical OHCs determined from nonstationary noise analysis was about half that of single-channel events recorded after tip link destruction. We hypothesized that this difference reflects a bandwidth limitation in the noise analysis, which we tested by simulations of stochastic fluctuations in modeled channels. Modeling indicated that the unitary conductance depended on the relative values of the channel activation time constant and the applied low-pass filter frequency. The modeling enabled the activation time constant of the channel to be estimated for the first time, yielding a value of only a few microseconds. We found that the channel conductance, assayed with both noise and recording of single-channel events, was reduced by a third in a new deafness mutant, Tmc1 p.D528N. Our results indicate that noise analysis is likely to underestimate MET channel amplitude, which is better characterized from recordings of single-channel events.  相似文献   

7.
Loss of the coenzyme NAD+, which is required for many energy‐dependent cellular processes, has emerged as a potentially unifying mechanism for age‐related conditions. A study in this issue of The EMBO Journal identifies a novel link between depletion of NAD+ and age‐associated loss of proliferating adult neural stem/progenitor cells in the murine brain (Stein & Imai, 2014 ). These data have important implications for how brain function might decline with age.  相似文献   

8.
Neurogenesis is the process in which neurons are generated from neural stem/progenitor cells (NSCs/NPCs). It involves the proliferation and neuronal fate specification/differentiation of NSCs, as well as migration, maturation and functional integration of the neuronal progeny into neuronal network. NSCs exhibit the two essential properties of stem cells: self-renewal and multipotency. Contrary to previous dogma that neurogenesis happens only during development, it is generally accepted now that neurogenesis can take place throughout life in mammalian brains. This raises a new therapeutic potential of applying stem cell therapy for stroke, neurodegenerative diseases and other diseases. However, the maintenance and differentiation of NSCs/NPCs are tightly controlled by the extremely intricate molecular networks. Uncovering the underlying mechanisms that drive the differentiation, migration and maturation of specific neuronal lineages for use in regenerative medicine is, therefore, crucial for the application of stem cell for clinical therapy as well as for providing insight into the mechanisms of human neurogenesis. Here, we focus on the role of bone morphogenetic protein (BMP) signaling in NSCs during mammalian brain development.  相似文献   

9.
The analysis of membrane trafficking has in the past mainly dealt with single cells in culture. Recent studies of membrane trafficking in Drosophila focus on how cells are organized in tissues and form epithelia during embryogenesis. During these processes, the specific involvement of distinct biosynthetic and endocytic routes is starting to be understood. Once organized in epithelia, cells communicate with each other to make cell fate decisions through morphogen gradients and lateral inhibition. Endocytosis seems to play unexpected roles in shaping morphogen gradients and in biasing lateral inhibition events. Once committed to a developmental program, cells differentiate. In the case of neurons, trafficking through the biosynthetic and endocytic pathways may give the necessary speed of response and versatility to axons that navigate through a changing environment during pathfinding.  相似文献   

10.
In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment.  相似文献   

11.
Viral infections in the prenatal (during pregnancy) and perinatal period have been a common cause of brain malformation. Besides the immediate neurological dysfunctions, virus infections may critically affect CNS development culminating in long-term cognitive deficits. Most of these neurotropic viruses are most damaging at a critical stage of the host, when the brain is in a dynamic stage of development. The neuropathology can be attributed to the massive neuronal loss induced by the virus as well as lack of CNS repair owing to a deficit in the neural stem/progenitor cell (NSPC) pool or aberrant formation of new neurons from NSPCs. Being one of the mitotically active populations in the post natal brain, the NSPCs have emerged as the potential targets of neurotropic viruses. The NSPCs are self-renewing and multipotent cells residing in the neurogenic niches of the brain, and, therefore, hampering the developmental fate of these cells may adversely affect the overall neurogenesis pattern. A number of neurotropic viruses utilize NSPCs as their cellular reservoirs and often establish latent and persistent infection in them. Both HIV and Herpes virus infect NSPCs over long periods of time and reactivation of the virus may occur later in life. The virus infected NSPCs either undergoes cell cycle arrest or impaired neuronal or glial differentiation, all of which leads to impaired neurogenesis. The disturbances in neurogenesis and CNS development following neurotropic virus infections have direct implications in the viral pathogenesis and long-term neurobehavioral outcome in infected individuals.  相似文献   

12.
PIEZO channels are force sensors essential for physiological processes, including baroreception and proprioception. The Caenorhabditis elegans genome encodes an orthologue gene of the Piezo family, pezo-1, which is expressed in several tissues, including the pharynx. This myogenic pump is an essential component of the C. elegans alimentary canal, whose contraction and relaxation are modulated by mechanical stimulation elicited by food content. Whether pezo-1 encodes a mechanosensitive ion channel and contributes to pharyngeal function remains unknown. Here, we leverage genome editing, genetics, microfluidics, and electropharyngeogram recording to establish that pezo-1 is expressed in the pharynx, including in a proprioceptive-like neuron, and regulates pharyngeal function. Knockout (KO) and gain-of-function (GOF) mutants reveal that pezo-1 is involved in fine-tuning pharyngeal pumping frequency, as well as sensing osmolarity and food mechanical properties. Using pressure-clamp experiments in primary C. elegans embryo cultures, we determine that pezo-1 KO cells do not display mechanosensitive currents, whereas cells expressing wild-type or GOF PEZO-1 exhibit mechanosensitivity. Moreover, infecting the Spodoptera frugiperda cell line with a baculovirus containing the G-isoform of pezo-1 (among the longest isoforms) demonstrates that pezo-1 encodes a mechanosensitive channel. Our findings reveal that pezo-1 is a mechanosensitive ion channel that regulates food sensation in worms.  相似文献   

13.

Background

Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro.

Scope of review

This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems.

Major conclusions

The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased.

General significance

Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

14.
15.
Increasing evidence indicates that development of embryonic central nervous system precursors is tightly regulated by extrinsic cues located in the local environment. Here, we asked whether neurotrophin-mediated signaling through Trk tyrosine kinase receptors is important for embryonic cortical precursor cell development. These studies demonstrate that inhibition of TrkB (Ntrk2) and/or TrkC (Ntrk3) signaling using dominant-negative Trk receptors, or genetic knockdown of TrkB using shRNA, caused a decrease in embryonic precursor cell proliferation both in culture and in vivo. Inhibition of TrkB/C also caused a delay in the generation of neurons, but not astrocytes, and ultimately perturbed the postnatal localization of cortical neurons in vivo. Conversely, overexpression of BDNF in cortical precursors in vivo promoted proliferation and enhanced neurogenesis. Together, these results indicate that neurotrophin-mediated Trk signaling plays an essential, cell-autonomous role in regulating the proliferation and differentiation of embryonic cortical precursors and thus controls cortical development at earlier stages than previously thought.  相似文献   

16.
TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.  相似文献   

17.
With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, human embryonic stem cells (hESCs) hold great promise in human cell therapy. However, there are limited tools for easily identifying and isolating live hESC-derived cells. To track hESC-derived neural progenitor cells (NPCs), we applied homologous recombination to knock-in the mCherry gene into the Nestin locus of hESCs. This facilitated the genetic labeling of Nestin positive neural progenitor cells with mCherry. Our reporter system enables the visualization of neural induction from hESCs both in vitro (embryoid bodies) and in vivo (teratomas). This system also permits the identification of different neural subpopulations based on the intensity of our fluorescent reporter. In this context, a high level of mCherry expression showed enrichment for neural progenitors, while lower mCherry corresponded with more committed neural states. Combination of mCherry high expression with cell surface antigen staining enabled further enrichment of hESC-derived NPCs. These mCherry+NPCs could be expanded in culture and their differentiation resulted in a down-regulation of mCherry consistent with the loss of Nestin expression. Therefore, we have developed a fluorescent reporter system that can be used to trace neural differentiation events of hESCs.  相似文献   

18.
During early stages of cerebral cortical development, progenitor cells in the ventricular zone are multipotent, producing neurons of many layers over successive cell divisions. The laminar fate of their progeny depends on environmental cues to which the cells respond prior to mitosis. By the end of neurogenesis, however, progenitors are lineally committed to producing upper-layer neurons. Here we assess the laminar fate potential of progenitors at a middle stage of cortical development. The progenitors of layer 4 neurons were first transplanted into older brains in which layer 2/3 was being generated. The transplanted neurons adopted a laminar fate appropriate for the new environment (layer 2/3), revealing that layer 4 progenitors are multipotent. Mid-stage progenitors were then transplanted into a younger environment, in which layer 6 neurons were being generated. The transplanted neurons bypassed layer 6, revealing that layer 4 progenitors have a restricted fate potential and are incompetent to respond to environmental cues that trigger layer 6 production. Instead, the transplanted cells migrated to layer 4, the position typical of their origin, and also to layer 5, a position appropriate for neither the host nor the donor environment. Because layer 5 neurogenesis is complete by the stage that progenitors were removed for transplantation, restrictions in laminar fate potential must lag behind the final production of a cortical layer. These results suggest that a combination of intrinsic and environmental cues controls the competence of cortical progenitor cells to produce neurons of different layers.  相似文献   

19.
20.
Mice with the K644E kinase domain mutation in fibroblast growth factor receptor 3 (Fgfr3) (EIIa;Fgfr3(+/K644E)) exhibited a marked enlargement of the brain. The brain size was increased as early as E11.5, not secondary to the possible effect of Fgfr3 activity in the skeleton. Furthermore, the mutant brains showed a dramatic increase in cortical thickness, a phenotype opposite to that in FGF2 knockout mice. Despite this increased thickness, cortical layer formation was largely unaffected and no cortical folding was observed during embryonic days 11.5-18.5 (E11.5-E18.5). Measurement of cortical thickness revealed an increase of 38.1% in the EIIa;Fgfr3(+/K644E) mice at E14.5 and the advanced appearance of the cortical plate was frequently observed at this stage. Unbiased stereological analysis revealed that the volume of the ventricular zone (VZ) was increased by more than two fold in the EIIa;Fgfr3(+/K644E) mutants at E14.5. A relatively mild increase in progenitor cell proliferation and a profound decrease in developmental apoptosis during E11.5-E14.5 most likely accounts for the dramatic increase in total telecephalic cell number. Taken together, our data suggest a novel function of Fgfr3 in controlling the development of the cortex, by regulating proliferation and apoptosis of cortical progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号