首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Herpesvirus of turkey (HVT) as a vector to express the haemagglutinin (HA) of avian influenza virus (AIV) H5 was developed and its protection against lethal Marek’s disease virus (MDV) and highly pathogenic AIV (HPAIV) challenges was evaluated previously. It is well-known that avirulemt MDV type 1 vaccines are more effective than HVT in prevention of lethal MDV infection. To further increase protective efficacy against HPAIV and lethal MDV, a recombinant MDV type 1 strain 814 was developed to express HA gene of HPAIV H5N1.

Methodology/Principal Findings

A recombinant MDV-1 strain 814 expressing HA gene of HPAIV H5N1 virus A/goose/Guangdong/3/96 at the US2 site (rMDV-HA) was developed under the control of a human CMV immediate-early promoter. The HA expression in the rMDV-HA was tested by immunofluorescence and Western blot analyses, and in vitro and in vivo growth properties of rMDV-HA were also analyzed. Furthermore, we evaluated and compared the protective immunity of rMDV-HA and previously constructed rHVT-HA against HPAIV and lethal MDV. Vaccination of chickens with rMDV-HA induced 80% protection against HPAIV, which was better than the protection rate by rHVT-HA (66.7%). In the animal study with MDV challenge, chickens immunized with rMDV-HA were completely protected against virulent MDV strain J-1 whereas rHVT-HA only induced 80% protection with the same challenge dose.

Conclusions/Significance

The rMDV-HA vaccine was more effective than rHVT-HA vaccine for protection against lethal MDV and HPAIV challenges. Therefore, avirulent MDV type 1 vaccine is a better vector than HVT for development of a recombinant live virus vaccine against virulent MDV and HPAIV in poultry.  相似文献   

2.
Marek''s disease virus (MDV), a lymphotropic alphaherpesvirus, causes Marek''s disease (MD) in chickens. MD is characterized by neurological signs, chronic wasting, and T cell lymphomas that predominate in the visceral organs. MDV replicates in a highly cell-associated manner in vitro and in vivo, with infectious virus particles being released only from feather follicle epithelial (FFE) cells in the skin. Virus produced and shed from FFE cells allows transmission of MDV from infected to naïve chickens, but the mechanisms or roles of differential virus gene expression have remained elusive. Here, we generated recombinant MDV in which we fused enhanced green fluorescent protein (EGFP) to the C terminus of the tegument protein pUL47 (vUL47-EGFP) or pUL49 (vUL49-EGFP). While vUL49-EGFP was highly attenuated in vitro and in vivo, vUL47-EGFP showed unaltered pathogenic potential and stable production of pUL47-EGFP, which facilitated direct analysis of pUL47 expression in cells and tissues. Our studies revealed that pUL47-EGFP is expressed at low levels and localizes to the nucleus during lytic replication in vitro and in lymphocytes in the spleen in vivo, while it is undetectable in tumors. In contrast, pUL47-EGFP is highly abundant and localizes predominantly in the cytoplasm in FFE cells in the skin, where MDV is shed into the environment. We concluded that differential expression and localization of MDV pUL47-EGFP tegument protein is potentially important for the unique cell-associated nature of MDV in vitro and in lymphocytes in vivo, as well as production of free virus in FFE cells.  相似文献   

3.
Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.  相似文献   

4.
Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV) as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA) or nucleoprotein (NP) of the highly pathogenic avian influenza virus (HPAIV) H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m.) injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8) influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.  相似文献   

5.
Marek''s disease virus (MDV) is a growing threat for the poultry industry. Unfortunately, despite successful vaccination against the disease, MDV remains in circulation within vaccinated flocks, leading to the selection of increasingly virulent pathotypes. Detailed knowledge of the virus biology and the host-virus interaction is required to improve the vaccine efficiency. In the present study, I engineered an original, dual-reporter MDV to track and quantify virus replication in vitro and in vivo.  相似文献   

6.
Arthropod RNA viruses pose a serious threat to human health, yet many aspects of their replication cycle remain incompletely understood. Here we describe a versatile Drosophila toolkit of transgenic, self-replicating genomes (‘replicons’) from Sindbis virus that allow rapid visualization and quantification of viral replication in vivo. We generated replicons expressing Luciferase for the quantification of viral replication, serving as useful new tools for large-scale genetic screens for identifying cellular pathways that influence viral replication. We also present a new binary system in which replication-deficient viral genomes can be activated ‘in trans’, through co-expression of an intact replicon contributing an RNA-dependent RNA polymerase. The utility of this toolkit for studying virus biology is demonstrated by the observation of stochastic exclusion between replicons expressing different fluorescent proteins, when co-expressed under control of the same cellular promoter. This process is analogous to ‘superinfection exclusion’ between virus particles in cell culture, a process that is incompletely understood. We show that viral polymerases strongly prefer to replicate the genome that encoded them, and that almost invariably only a single virus genome is stochastically chosen for replication in each cell. Our in vivo system now makes this process amenable to detailed genetic dissection. Thus, this toolkit allows the cell-type specific, quantitative study of viral replication in a genetic model organism, opening new avenues for molecular, genetic and pharmacological dissection of virus biology and tool development.  相似文献   

7.
Disease vectors such as mosquitoes and ticks play a major role in the emergence and re-emergence of human and animal viral pathogens. Compared to mosquitoes, however, much less is known about the antiviral responses of ticks. Here we showed that Asian longhorned ticks (Haemaphysalis longicornis) produced predominantly 22-nucleotide virus-derived siRNAs (vsiRNAs) in response to severe fever with thrombocytopenia syndrome virus (SFTSV, an emerging tick-borne virus), Nodamura virus (NoV), or Sindbis virus (SINV) acquired by blood feeding. Notably, experimental acquisition of NoV and SINV by intrathoracic injection also initiated viral replication and triggered the production of vsiRNAs in H. longicornis. We demonstrated that a mutant NoV deficient in expressing its viral suppressor of RNAi (VSR) replicated to significantly lower levels than wildtype NoV in H. longicornis, but accumulated to higher levels after knockdown of the tick Dicer2-like protein identified by phylogeny comparison. Moreover, the expression of a panel of known animal VSRs in cis from the genome of SINV drastically enhanced the accumulation of the recombinant viruses. This study establishes a novel model for virus-vector-mouse experiments with longhorned ticks and provides the first in vivo evidence for an antiviral function of the RNAi response in ticks. Interestingly, comparing the accumulation levels of SINV recombinants expressing green fluorescent protein or SFTSV proteins identified the viral non-structural protein as a putative VSR. Elucidating the function of ticks’ antiviral RNAi pathway in vivo is critical to understand the virus-host interaction and the control of tick-borne viral pathogens.  相似文献   

8.
9.
Marek''s disease virus (MDV) is a cell-associated and highly oncogenic alphaherpesvirus that infects chickens. During lytic and latent MDV infection, a CXC chemokine termed viral interleukin-8 (vIL-8) is expressed. Deletion of the entire vIL-8 open reading frame (ORF) was shown to severely impair disease progression and tumor development; however, it was unclear whether this phenotype was due to loss of secreted vIL-8 or of splice variants that fuse exons II and III of vIL-8 to certain upstream open reading frames, including the viral oncoprotein Meq. To specifically examine the role of secreted vIL-8 in MDV pathogenesis, we constructed a recombinant virus, vΔMetvIL-8, in which we deleted the native start codon from the signal peptide encoding exon I. This mutant lacked secreted vIL-8 but did not affect Meq–vIL-8 splice variants. Loss of secreted vIL-8 resulted in highly reduced disease and tumor incidence in animals infected with vΔMetvIL-8 by the intra-abdominal route. Although vΔMetvIL-8 was still able to spread to naïve animals by the natural route, infection and lymphomagenesis in contact animals were severely impaired. In vitro assays showed that purified recombinant vIL-8 efficiently binds to and induces chemotaxis of B cells, which are the main target for lytic MDV replication, and also interacts with CD4+ CD25+ T cells, known targets of MDV transformation. Our data provide evidence that vIL-8 attracts B and CD4+ CD25+ T cells to recruit targets for both lytic and latent infection.  相似文献   

10.
11.

Background

Detection, isolation, and identification of individual virus infected cells during long term infection are critical to advance our understanding of mechanisms of pathogenesis for latent/persistent viruses. However, current approaches to study these viruses in vivo have been hampered by low sensitivity and effects of cell-type on expression of viral encoded reporter genes. We have designed a novel Cre recombinase (Cre)-based murine system to overcome these problems, and thereby enable tracking and isolation of individual in vivo infected cells.

Methodology/Principal findings

Murine gammaherpesvirus 68 (MHV-68) was used as a prototypic persistent model virus. A Cre expressing recombinant virus was constructed and characterised. The virus is attenuated both in lytic virus replication, producing ten-fold lower lung virus titres than wild type virus, and in the establishment of latency. However, despite this limitation, when the sEGFP7 mouse line containing a Cre-activated enhanced green fluorescent protein (EGFP) was infected with the Cre expressing virus, sites of latent and persistent virus infection could be identified within B cells and macrophages of the lymphoid system on the basis of EGFP expression. Importantly, the use of the sEGFP7 mouse line which expresses high levels of EGFP allowed individual virus positive cells to be purified by FACSorting. Virus gene expression could be detected in these cells. Low numbers of EGFP positive cells could also be detected in the bone marrow.

Conclusions/Significance

The use of this novel Cre-based virus/mouse system allowed identification of individual latently infected cells in vivo and may be useful for the study and long-term monitoring of other latent/persistent virus infections.  相似文献   

12.
Skin infection with the poxvirus vaccinia (VV) elicits a powerful, inflammatory cellular response that clears virus infection in a coordinated, spatially organized manner. Given the high concentration of pro-inflammatory effectors at areas of viral infection, it is unclear how tissue pathology is limited while virus-infected cells are being eliminated. To better understand the spatial dynamics of the anti-inflammatory response to a cutaneous viral infection, we first screened cytokine mRNA expression levels after epicutaneous (ec.) VV infection and found a large increase the anti-inflammatory cytokine IL-10. Ex vivo analyses revealed that T cells in the skin were the primary IL-10-producing cells. To understand the distribution of IL-10-producing T cells in vivo, we performed multiphoton intravital microscopy (MPM) of VV-infected mice, assessing the location and dynamic behavior of IL-10 producing cells. Although virus-specific T cells were distributed throughout areas of the inflamed skin lacking overt virus-infection, IL-10+ cells closely associated with large keratinocytic foci of virus replication where they exhibited similar motility patterns to bulk antigen-specific CD8+ T cells. Paradoxically, neutralizing secreted IL-10 in vivo with an anti-IL-10 antibody increased viral lesion size and viral replication. Additional analyses demonstrated that IL-10 antibody administration decreased recruitment of CCR2+ inflammatory monocytes, which were important for reducing viral burden in the infected skin. Based upon these findings, we conclude that spatially concentrated IL-10 production limits cutaneous viral replication and dissemination, likely through modulation of the innate immune repertoire at the site of viral growth.  相似文献   

13.
Fowlpox virus (FPV) recombinants expressing the glycoprotein B and the phosphorylated protein (pp38) of the GA strain of Marek's disease virus (MDV) were assayed for their ability to protect chickens against challenge with virulent MDV. The recombinant FPV expressing the glycoprotein B gene elicited neutralizing antibodies against MDV, significantly reduced the level of cell-associated viremia, and, similar to the conventional herpesvirus of turkeys, protected chickens against challenge with the GA strain and the highly virulent RB1B and Md5 strains of MDV. The recombinant FPV expressing the pp38 gene failed to either elicit neutralizing antibodies against MDV or protect the vaccinated chickens against challenge with MDV.  相似文献   

14.
The continual public health threat posed by the emergence of novel influenza viruses necessitates the ability to rapidly monitor infection and spread in experimental systems. To analyze real-time infection dynamics, we have created a replication-competent influenza reporter virus suitable for in vivo imaging. The reporter virus encodes the small and bright NanoLuc luciferase whose activity serves as an extremely sensitive readout of viral infection. This virus stably maintains the reporter construct and replicates in culture and in mice with near-native properties. Bioluminescent imaging of the reporter virus permits serial observations of viral load and dissemination in infected animals, even following clearance of a sublethal challenge. We further show that the reporter virus recapitulates known restrictions due to host range and antiviral treatment, suggesting that this technology can be applied to studying emerging influenza viruses and the impact of antiviral interventions on infections in vivo. These results describe a generalizable method to quickly determine the replication and pathogenicity potential of diverse influenza strains in animals.  相似文献   

15.
16.
Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, fluorescent viruses are more appropriate for microscopy. Therefore, the idea l reporter virus varies depending on the experiment in question, and it is important that any reporter virus strategy can be adapted accordingly. Herein, a strategy was developed to create five different reporter viruses in a single virus backbone. Specifically, enhanced green fluorescent protein (eGFP), far-red fluorescent protein (fRFP), near-infrared fluorescent protein (iRFP), Gaussia luciferase (gLUC) and firefly luciferase (fLUC) were inserted into the PA gene segment of A/PR/8/34 (H1N1). This study provides a comprehensive characterisation of the effects of different reporter genes on influenza virus replication and reporter activity. In vivo reporter gene expression, in lung tissues, was only detected for eGFP, fRFP and gLUC expressing viruses. In vitro, the eGFP-expressing virus displayed the best reporter stability and could be used for correlative light electron microscopy (CLEM). This strategy was then used to create eGFP-expressing viruses consisting entirely of pandemic H1N1, highly pathogenic avian influenza (HPAI) H5N1 and H7N9. The HPAI H5N1 eGFP-expressing virus infected mice and reporter gene expression was detected, in lung tissues, in vivo. Thus, this study provides new tools and insights for the creation of bioluminescent and fluorescent influenza A reporter viruses.  相似文献   

17.
The HIV-specific cytotoxic T lymphocyte (CTL) response is a critical component in controlling viral replication in vivo, but ultimately fails in its ability to eradicate the virus. Our intent in these studies is to develop ways to enhance and restore the HIV-specific CTL response to allow long-term viral suppression or viral clearance. In our approach, we sought to genetically manipulate human hematopoietic stem cells (HSCs) such that they differentiate into mature CTL that will kill HIV infected cells. To perform this, we molecularly cloned an HIV-specific T cell receptor (TCR) from CD8+ T cells that specifically targets an epitope of the HIV-1 Gag protein. This TCR was then used to genetically transduce HSCs. These HSCs were then introduced into a humanized mouse containing human fetal liver, fetal thymus, and hematopoietic progenitor cells, and were allowed to differentiate into mature human CD8+ CTL. We found human, HIV-specific CTL in multiple tissues in the mouse. Thus, genetic modification of human HSCs with a cloned TCR allows proper differentiation of the cells to occur in vivo, and these cells migrate to multiple anatomic sites, mimicking what is seen in humans. To determine if the presence of the transgenic, HIV-specific TCR has an effect on suppressing HIV replication, we infected with HIV-1 mice expressing the transgenic HIV-specific TCR and, separately, mice expressing a non-specific control TCR. We observed significant suppression of HIV replication in multiple organs in the mice expressing the HIV-specific TCR as compared to control, indicating that the presence of genetically modified HIV-specific CTL can form a functional antiviral response in vivo. These results strongly suggest that stem cell based gene therapy may be a feasible approach in the treatment of chronic viral infections and provide a foundation towards the development of this type of strategy.  相似文献   

18.

Background

The highly attenuated vaccinia virus strain NYVAC expressing HIV-1 components has been evaluated as a vaccine candidate in preclinical and clinical trials with encouraging results. We have previously described that the presence of C7L in the NYVAC genome prevents the induction of apoptosis and renders the vector capable of replication in human and murine cell lines while maintaining an attenuated phenotype in mice.

Methodology/Principal Findings

In an effort to improve the immunogenicity of NYVAC, we have developed a novel poxvirus vector by inserting the VACV host-range C7L gene into the genome of NYVAC-B, a recombinant virus that expresses four HIV-1 antigens from clade B (Env, Gag, Pol and Nef) (referred as NYVAC-B-C7L). In the present study, we have compared the in vitro and in vivo behavior of NYVAC-B and NYVAC-B-C7L. In cultured cells, NYVAC-B-C7L expresses higher levels of heterologous antigen than NYVAC-B as determined by Western blot and fluorescent-activated cell sorting to score Gag expressing cells. In a DNA prime/poxvirus boost approach with BALB/c mice, both recombinants elicited robust, broad and multifunctional antigen-specific T-cell responses to the HIV-1 immunogens expressed from the vectors. However, the use of NYVAC-B-C7L as booster significantly enhanced the magnitude of the T cell responses, and induced a more balanced cellular immune response to the HIV-1 antigens in comparison to that elicited in animals boosted with NYVAC-B.

Conclusions/Significance

These findings demonstrate the possibility to enhance the immunogenicity of the highly attenuated NYVAC vector by the insertion of the host-range gene C7L and suggest the use of this modified vector as an improved vaccine candidate against HIV/AIDS.  相似文献   

19.
Chlamydia psittaci (C. psittaci) is an obligate intracellular zoonotic pathogen that can be transmitted to humans from birds. No efficacious commercial vaccine is available for clearing chlamydial infection due to lack of potential vaccine candidates and effective delivery vehicles. Herpesvirus of turkeys (HVT) is an efficacious commercially available vaccine against Marek’s Disease virus (MDV). In this study, a recombinant HVT-delivered vaccine against C. psittaci and Marek’s disease was developed and examined. The 5''-terminus of pmpD gene (pmpD-N) encoding the N-terminal fragment of polymorphic membrane protein D of C. psittaci was inserted into a nonessential region of HVT genome using reverse genetics based on an infectious bacterial artificial chromosome (BAC) clone of HVT. The recombinant virus (rHVT-pmpD-N) was recovered from primary chicken embryo fibroblast (CEF) cells by transfection of modified HVT BAC DNA containing the pmpD-N gene. The rHVT-pmpD-N construct was confirmed to express PmpD-N by immunoblot and immunofluorescence. The rHVT-pmpD-N was stable during 20 passages in vitro. The growth kinetics of rHVT-pmpD-N was comparable to that of parental HVT in vitro and in vivo. One-day-old SPF chickens inoculated subcutaneously with rHVT-pmpD-N displayed increased PmpD-specific antibody levels and a vigorous PmpD-specific lymphocyte proliferation response using HVT vector or CEF cells as control. Furthermore, the percentage of CD4+ cells was significantly elevated in rHVT-pmpD-N-immunized birds as compared to the parental HVT. All chickens vaccinated with rHVT-pmpD-N or parental HVT were protected completely against challenge with a very virulent strain of Marek’s Disease virus (MDV) RB-1B. Post challenge with C. psittaci CB7 strain, a significant decrease in respiratory distress, lesions and Chlamydia load was found in the rHVT-pmpD-N-vaccinated group compared to the parental HVT. In conclusion, our study suggests that the rHVT-pmpD-N live vaccine may be viable as a candidate dual vaccine that provides protection against both very virulent MDV and C. psittaci.  相似文献   

20.
Infectious bursal disease virus (IBDV), a double-stranded RNA virus, causes immunosuppression and high mortality in 3–6-week-old chickens. Innate immune defense is a physical barrier to restrict viral replication. After viral infection, the host shows crucial defense responses, such as stimulation of antiviral effectors to restrict viral replication. Here, we conducted RNA-seq in avian cells infected by IBDV and identified TRIM25 as a host restriction factor. Specifically, TRIM25 deficiency dramatically increased viral yields, whereas overexpression of TRIM25 significantly inhibited IBDV replication. Immunoprecipitation assays indicated that TRIM25 only interacted with VP3 among all viral proteins, mediating its K27-linked polyubiquitination and subsequent proteasomal degradation. Moreover, the Lys854 residue of VP3 was identified as the key target site for the ubiquitination catalyzed by TRIM25. The ubiquitination site destroyed enhanced the replication ability of IBDV in vitro and in vivo. These findings demonstrated that TRIM25 inhibited IBDV replication by specifically ubiquitinating and degrading the structural protein VP3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号