首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
For many years, the wood decay process by fungi was associated almost exclusively with production of lignocellulolytic enzymes. However, recent studies by electron microscopy have shown that fungal enzymes are too large to penetrate into the cell wall at an early stage of decay. Thus, the hypothesis that low molecular mass agents may initiate the breakdown of both cellulose and lignin was proposed. The purpose of this work was to detect low molecular mass compounds, with metal-chelating capability, from liquid cultures of two wood-rot fungi. The brown-rot fungus Wolfiporia cocos produced the highest chrome azurol S (CAS) reaction, simultaneously reducing the pH of the malt extract medium. In contrast, the white-rot fungus Trametes versicolor did not react with CAS and the pH remained approximately constant during the culture period. The presence of hydroxamate derivatives and oxalic acid was detected in extracts of low molecular mass of both fungi. Moreover, in W. cocos extracts, catecholate derivatives were also detected. Accumulation of oxalic acid was greater in W. cocos than in T. versicolor at the end of the culture period, and this might be responsible for the strong response from W. cocos in the CAS reaction.  相似文献   

4.
The sclerotium of Poria cocos has been used in the Chinese pharmacopoeia during thousands of years. In this note several aspects about the biology and nomenclature of this fungus are summarized, with emphasis on its composition and therapeutic applications.  相似文献   

5.
Metabolite profiling of Wolfiporia cocos (family: Polyporaceae) had been much advancement in recent days, and its analysis by nuclear magnetic resonance (NMR) spectroscopy has become well established. However, the highly important trait of W. cocos still needs advanced protocols despite some standardization. Partial least squares discriminant analysis (PLS-DA) was used as the multivariate statistical analysis of the 1H NMR data set. The PLS-DA model was validated, and the key metabolites contributing to the separation in the score plots of different ethanol W. cocos extract. 1H NMR spectroscopy of W. cocos identified 33 chemically diverse metabolites in D2O, consisting of 13 amino acids, 11 organic acids 2 sugars, 3 sugar alcohols, 1 nucleoside, and 3 others. Among these metabolites, the levels of tyrosine, proline, methionine, sarcosine, choline, acetoacetate, citrate, 4-aminobutyrate, aspartate, maltose, malate, lysine, xylitol, lactate threonine, leucine, valine, isoleucine, uridine, guanidoacetate, arabitol, mannitol, glucose, and betaine were increased in the 95% ethanol extraction sample compared with the levels in other samples, whereas level of acetate, phenylalanine, alanine, succinate, and fumarate were significantly increased in the 0% ethanol extraction sample. A biological triterpenoid, namely pachymic acid, was detected from different ethanol P. cocos extract using 1H-NMR spectra were found in CDCl3. This is the first report to perform the metabolomics profiling of different ethanol W. cocos extract. These researches suggest that W. cocos can be used to obtain substantial amounts of bioactive ingredients for use as potential pharmacological and nutraceuticals agents.  相似文献   

6.
This is the first report of the genome sequence of Trichosporon asahii environmental strain CBS 8904, which was isolated from maize cobs. Comparison of the genome sequence with that of clinical strain CBS 2479 revealed that they have >99% chromosomal and mitochondrial sequence identity, yet CBS 8904 has 368 specific genes. Analysis of clusters of orthologous groups predicted that 3,307 genes belong to 23 functional categories and 703 genes were predicted to have a general function.  相似文献   

7.
White strains of Hypsizygus marmoreus are more difficult to cultivate than are brown strains; therefore, new white strain breeding strategies are required. Accordingly, we constructed the genetic map of H. marmoreus with 1996 SNP markers on 11 linkage groups (LGs) spanning 1380.49 cM. Prior to analysis, 82 backcrossed strains (HM8 lines) were generated by mating between KMCC03106-31 and the progenies of the F1 hybrid (Hami-18 × KMCC03106-93). Using HM8, the first 23 quantitative trait loci (QTLs) of yield-related traits were detected with high limit of detection (LOD) scores (1.98–9.86). The length, thickness, and hardness of the stipe were colocated on LG 1. Especially, length of stipe and thickness of stipe were highly correlated given that the correlation coefficients were negative (−0.39, p value ≤ .01). And a typical biomodal distribution was observed for lightness of the pileus and the lightness of the pileus trait belonged to the LG 8, as did traits of earliness and mycelial growth in potato dextrose agar (PDA) medium. Therefore, results for color traits can be suggested that color is controlled by a multi-gene of one locus. The yield trait was highly negatively correlated with the traits for thickness of the stipe (−0.45, p value ≤ .01). Based on additive effects, the white strain was confirmed as recessive; however, traits of mycelial growth, lightness, and quality were inherited by backcrossed HM8 lines. This new genetic map, finely mapped QTLs, and the strong selection markers could be used in molecular breeding of H. marmoreus.  相似文献   

8.
9.
The biocontrol strain Pseudomonas sp. Cab57 was isolated from the rhizosphere of shepherd’s purse growing in a field in Hokkaido by screening the antibiotic producers. The whole genome sequence of this strain was obtained by paired-end and whole-genome shotgun sequencing, and the gaps between the contigs were closed using gap-spanning PCR products. The P. sp. Cab57 genome is organized into a single circular chromosome with 6,827,892 bp, 63.3% G+C content, and 6,186 predicted protein-coding sequences. Based on 16S rRNA gene analysis and whole genome analysis, strain Cab57 was identified as P. protegens. As reported in P. protegens CHA0 and Pf-5, four gene clusters (phl, prn, plt, and hcn) encoding the typical antibiotic metabolites and the reported genes associated with Gac/Rsm signal transduction pathway of these strains are fully conserved in the Cab57 genome. Actually strain Cab57 exhibited typical Gac/Rsm activities and antibiotic production, and these activities were enhanced by knocking out the retS gene (for a sensor kinase acting as an antagonist of GacS). Two large segments (79 and 115 kb) lacking in the Cab57 genome, as compared with the Pf-5 genome, accounted for the majority of the difference (247 kb) between these genomes. One of these segments was the complete rhizoxin analog biosynthesis gene cluster (ca. 79 kb) and another one was the 115-kb mobile genomic island. A whole genome comparison of those relative strains revealed that each strain has unique gene clusters involved in metabolism such as nitrite/nitrate assimilation, which was identified in the Cab57 genome. These findings suggest that P. protegens is a ubiquitous bacterium that controls its biocontrol traits while building up strain-specific genomic repertoires for the biosynthesis of secondary metabolites and niche adaptation.  相似文献   

10.
Gloeostereum incarnatum has edible and medicinal value and was first cultivated and domesticated in China. We sequenced the G. incarnatum monokaryotic strain GiC-126 on an Illumina HiSeq X Ten system and obtained a 34.52-Mb genome assembly sequence that encoded 16,895 predicted genes. We combined the GiC-126 genome with the published genome of G. incarnatum strain CCMJ2665 to construct a genetic linkage map (GiC-126 genome) that had 10 linkage groups (LGs), and the 15 assembly sequences of CCMJ2665 were integrated into 8 LGs. We identified 1912 simple sequence repeat (SSR) loci and detected 700 genes containing 768 SSRs in the genome; 65 and 100 of them were annotated with gene ontology (GO) terms and KEGG pathways, respectively. Carbohydrate-active enzymes (CAZymes) were identified in 20 fungal genomes and annotated; among them, 144 CAZymes were annotated in the GiC-126 genome. The A mating-type locus (MAT-A) of G. incarnatum was located on scaffold885 at 38.9 cM of LG1 and was flanked by two homeodomain (HD1) genes, mip and beta-fg. Fourteen segregation distortion markers were detected in the genetic linkage map, all of which were skewed toward the parent GiC-126. They formed three segregation distortion regions (SDR1–SDR3), and 22 predictive genes were found in scaffold1920 where three segregation distortion markers were located in SDR1. In this study, we corrected and updated the genomic information of G. incarnatum. Our results will provide a theoretical basis for fine gene mapping, functional gene cloning, and genetic breeding the follow-up of G. incarnatum.  相似文献   

11.
12.
Asparagus kiusianus is a disease-resistant dioecious plant species and a wild relative of garden asparagus (Asparagus officinalis). To enhance A. kiusianus genomic resources, advance plant science, and facilitate asparagus breeding, we determined the genome sequences of the male and female lines of A. kiusianus. Genome sequence reads obtained with a linked-read technology were assembled into four haplotype-phased contig sequences (∼1.6 Gb each) for the male and female lines. The contig sequences were aligned onto the chromosome sequences of garden asparagus to construct pseudomolecule sequences. Approximately 55,000 potential protein-encoding genes were predicted in each genome assembly, and ∼70% of the genome sequence was annotated as repetitive. Comparative analysis of the genomes of the two species revealed structural and sequence variants between the two species as well as between the male and female lines of each species. Genes with high sequence similarity with the male-specific sex determinant gene in A. officinalis, MSE1/AoMYB35/AspTDF1, were presented in the genomes of the male line but absent from the female genome assemblies. Overall, the genome sequence assemblies, gene sequences, and structural and sequence variants determined in this study will reveal the genetic mechanisms underlying sexual differentiation in plants, and will accelerate disease-resistance breeding in garden asparagus.  相似文献   

13.
An endolichenic fungus, Xylaria grammica strain EL000614, showed strong nematicidal effects against plant pathogenic nematode, Meloidogyne incognita by producing grammicin. We report genome assembly of X. grammica EL000614 comprised of 25 scaffolds with a total length of 54.73 Mb, N50 of 4.60 Mb, and 99.8% of BUSCO completeness. GC contents of this genome were 44.02%. Gene families associated with biosynthesis of secondary metabolites or regulatory proteins were identified out of 13,730 gene models predicted.  相似文献   

14.
The blood pathogens of grasserie caused by Bombyx mori nucleopolyhedrovirus BmNPV have a serious impact on the sericulture industry. To understand the genetic status of BmNPV endemic strains in the Yunnan sericulture region, the structure and complete genome sequence of BmNPV isolated from Baoshan city of Yunnan Province were described and compared to known strains. The BmNPV-Baoshan isolate was a nucleopolyhedrovirus parasitized in silkworm larvae. Its genome has 128, 452 bp with a G + C content of 40.4%. Phylogenetic analysis clustered the virus with China BmNPV isolates; BmNPV-Baoshan was closely related to BomaNPV-S1 (both strains originated from the same ancestor). BmNPV-Baoshan strain has bro-b gene deletion, hr1 missing 4 repeat units of 30-bp palindrome structure compared to BmNPV-T3 strain. The aim of this study was to elucidate the evolution of the virus further and provide insights for the protection of virus-induced hematologic sepsis.  相似文献   

15.
Vibrio coralliilyticus has been implicated as an important pathogen of coral species worldwide. In this study, the nearly complete genome of Vibrio coralliilyticus strain P1 (LMG23696) was sequenced and proteases implicated in virulence of the strain were specifically investigated. The genome sequence of P1 (5 513 256 bp in size) consisted of 5222 coding sequences and 58 RNA genes (53 tRNAs and at least 5 rRNAs). Seventeen metalloprotease and effector (vgrG, hlyA and hcp) genes were identified in the genome and expressed proteases were also detected in the secretome of P1. As the VcpA zinc-metalloprotease has been considered an important virulence factor of V. coralliilyticus, a vcpA deletion mutant was constructed to evaluate the effect of this gene in animal pathogenesis. Both wild-type and mutant (ΔvcpA) strains exhibited similar virulence characteristics that resulted in high mortality in Artemia and Drosophila pathogenicity bioassays and strong photosystem II inactivation of the coral dinoflagellate endosymbiont (Symbiodinium). In contrast, the ΔvcpA mutant demonstrated higher hemolytic activity and secreted 18 proteins not secreted by the wild type. These proteins included four types of metalloproteases, a chitinase, a hemolysin-related protein RbmC, the Hcp protein and 12 hypothetical proteins. Overall, the results of this study indicate that V. coralliilyticus strain P1 has a diverse virulence repertoire that possibly enables this bacterium to be an efficient animal pathogen.  相似文献   

16.
海洋来源真菌的天然产物因其独特的结构与生物学活性而备受关注,而利用基因组信息对其代谢产物进行深入挖掘也成为研究策略之一。[目的] 本文以一株南海珊瑚来源的真菌Parengyodontium album SCSIO SX7W11为目标菌株,挖掘其生产聚酮类化合物的潜能。[方法] 本研究利用Illumina Miseq技术对SX7W11菌株进行全基因组扫描测序,运用生物信息学手段对其基因组的生物合成基因簇进行预测和基因功能注释,挖掘可能产生新颖聚酮化合物的基因簇。对SX7W11进行放大发酵后,利用正相色谱、中压反相色谱、Sephadex LH-20凝胶色谱、HPLC半制备等分离手段分离纯化出单体化合物。再利用高分辨质谱(HR-ESI-MS)、1H NMR、13C NMR、X-ray单晶衍射等波谱手段确定化合物的结构,并根据生物合成基因簇对化合物的生物合成途径进行推导。[结果] 全基因组扫描测序结果显示,P.album SCSIO SX7W11基因组大小为34.0 Mb,含有24个生物合成基因簇,包括6个聚酮合酶基因簇以及3个萜烯合酶基因簇。从发酵产物中分离鉴定到3个聚酮类化合物:emodin(1)、alternaphenol B(2)和sydowinin A(3),其中化合物3获得了单晶结构数据。通过生物信息学方法从菌株基因组中定位到了sydowinin A的生物合成基因簇。结合文献对emodin(1)、alternaphenol B(2)和sydowinin A(3)的生物合成途径进行了分析。[结论] 本研究通过基因组挖掘及培养基优化,发现1株珊瑚来源的真菌P.album SCSIO SX7W11具有生产sydowinins类聚酮类化合物的能力,为该类化合物生物合成机制深入研究奠定了基础。  相似文献   

17.
Fungi are generally thought to live in host plants with a single lifestyle, being parasitism, commensalism, or mutualism. The former, known as phytopathogenic fungi, cause various plant diseases that result in significant losses every year; while the latter, such as endophytic fungi, can confer fitness to the host plants. It is unclear whether biological factors can modulate the parasitic and mutualistic traits of a fungus. In this study, we isolated and characterized a mycovirus from an endophytic strain of the fungus Pestalotiopsis theae, a pathogen of tea (Camellia sinensis). Based on molecular analysis, we tentatively designated the mycovirus as Pestalotiopsis theae chrysovirus-1 (PtCV1), a novel member of the family Chrysoviridae, genus Alphachrysovirus. PtCV1 has four double-stranded (ds) RNAs as its genome, ranging from 0.9 to 3.4 kbp in size, encapsidated in isometric particles. PtCV1 significantly reduced the growth rates of its host fungus in vitro (ANOVA; P-value < 0.001) and abolished its virulence in planta (ANOVA; P-value < 0.001), converting its host fungus to a non-pathogenic endophyte on tea leaves, while PtCV1-free isolates were highly virulent. Moreover, the presence of PtCV1 conferred high resistance to the host plants against the virulent P. theae strains. Here we report a mycovirus that modulates endophytic and phytopathogenic fungal traits and provides an alternative approach to biological control of plant diseases caused by fungi.Subject terms: Fungal biology, Applied microbiology, Virus-host interactions  相似文献   

18.
19.
Here, we report the draft genome sequence of Streptomyces sp. strain AA0539, isolated from marine sediment of the Yellow Sea, China. Its small genome (∼5.8 Mb) contains large, unique genes and gene clusters for diverse secondary metabolites, suggesting great potential as a source for the discovery of novel natural products.  相似文献   

20.

Background

Whole-genome sequencing is an important method to understand the genetic information, gene function, biological characteristics and survival mechanisms of organisms. Sequencing large genomes is very simple at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. Shotgun sequencing method failed to complete the sequence of this genome.

Results

After persevering for 10 years and going over three generations of sequencing techniques, we successfully completed the sequence of the PaP1 genome with a length of 91,715 bp. Single-molecule real-time sequencing results revealed that this genome contains 51 N-6-methyladenines and 152 N-4-methylcytosines. Three significant modified sequence motifs were predicted, but not all of the sites found in the genome were methylated in these motifs. Further investigations revealed a novel immune mechanism of bacteria, in which host bacteria can recognise and repel modified bases containing inserts in a large scale. This mechanism could be accounted for the failure of the shotgun method in PaP1 genome sequencing. This problem was resolved using the nfi- mutant of Escherichia coli DH5α as a host bacterium to construct a shotgun library.

Conclusions

This work provided insights into the hard-to-sequence phage PaP1 genome and discovered a new mechanism of bacterial immunity. The methylome of phage PaP1 is responsible for the failure of shotgun sequencing and for bacterial immunity mediated by enzyme Endo V activity; this methylome also provides a valuable resource for future studies on PaP1 genome replication and modification, as well as on gene regulation and host interaction.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-803) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号