首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThe tumour microenvironment primarily constitutes macrophages in the form of an immunosuppressive M2 phenotype, which promotes tumour growth. Thus, the development of methodologies to rewire M2‐like tumour‐associated macrophages (TAMs) into the M1 phenotype, which inhibits tumour growth, might be a critical advancement in cancer immunotherapy research.MethodsThe expressions of IL‐33 and indicators related to macrophage polarization in oesophageal squamous cell carcinoma (ESCC) tissues and peripheral blood mononuclear cell (PBMC)–derived macrophages were determined. Inhibition of ornithine decarboxylase (ODC) with small interfering RNA was used to analyse the phenotype of macrophage polarization and polyamine secretory signals. CCK‐8, wound‐healing and Transwell assays were used to detect the proliferation and migration of ECA109 cells in vitro. The tumour xenograft assay in nude mice was used to examine the role of IL‐33 in ESCC development in vivo.ResultsThis study showed the substantially elevated IL‐33 expression in ESCC tissues compared with the normal tissues. Additionally, enhanced infiltration of M2‐like macrophages into the ESCC tumour tissue was also observed. We observed a strong correlation between the IL‐33 levels and the infiltration of M2‐like macrophages in ESCC tumours locally. Mechanistically, IL‐33 induces M2‐like macrophage polarization by activating ODC, a key enzyme that catalyses the synthesis of polyamines. Inhibition of ODC suppressed M2‐like macrophage polarization. Finally, in vivo, we confirmed that IL‐33 promotes tumour progression.ConclusionsThis study revealed an oncogenic role of IL‐33 by actively inducing M2‐like macrophage differentiation; thus, contributing to the formation of an immunosuppressive ESCC tumour microenvironment. Thus, IL‐33 could act as a novel target for cancer immunotherapies.  相似文献   

2.
Epidemiological studies have suggested a lower incidence of arrhythmia‐induced sudden cardiac death in women than in men. 17β‐oestradiol (E2) has been reported to have a post‐myocardial infarction antiarrhythmic effect, although the mechanisms have yet to be elucidated. We investigated whether E2‐mediated antioxidation regulates macrophage polarization and affects cardiac sympathetic reinnervation in rats after MI. Ovariectomized Wistar rats were randomly assigned to placebo pellets, E2 treatment, or E2 treatment +3‐morpholinosydnonimine (a peroxynitrite generator) and followed for 4 weeks. The infarct sizes were similar among the infarcted groups. At Day 3 after infarction, post‐infarction was associated with increased superoxide levels, which were inhibited by administering E2. E2 significantly increased myocardial IL‐10 levels and the percentage of regulatory M2 macrophages compared with the ovariectomized infarcted alone group as assessed by immunohistochemical staining, Western blot and RT‐PCR. Nerve growth factor colocalized with both M1 and M2 macrophages at the magnitude significantly higher in M1 compared with M2. At Day 28 after infarction, E2 was associated with attenuated myocardial norepinephrine levels and sympathetic hyperinnervation. These effects of E2 were functionally translated in inhibiting fatal arrhythmias. The beneficial effect of E2 on macrophage polarization and sympathetic hyperinnervation was abolished by 3‐morpholinosydnonimine. Our results indicated that E2 polarized macrophages into the M2 phenotype by inhibiting the superoxide pathway, leading to attenuated nerve growth factor‐induced sympathetic hyperinnervation after myocardial infarction.  相似文献   

3.
Radiation‐induced lung injury (RILI) mainly contributes to the complications of thoracic radiotherapy. RILI can be divided into radiation pneumonia (RP) and radiation‐induced lung fibrosis (RILF). Once RILF occurs, patients will eventually develop irreversible respiratory failure; thus, a new treatment strategy to prevent RILI is urgently needed. This study explored the therapeutic effect of pirfenidone (PFD), a Food and Drug Administration (FDA)‐approved drug for (IPF) treatment, and its mechanism in the treatment of RILF. In vivo, C57BL/6 mice received a 50 Gy dose of X‐ray radiation to the whole thorax with or without the administration of PFD. Collagen deposition and fibrosis in the lung were reversed by PFD treatment, which was associated with reduced M2 macrophage infiltration and inhibition of the transforming growth factor‐β1 (TGF‐β1)/Drosophila mothers against the decapentaplegic 3 (Smad3) signalling pathway. Moreover, PFD treatment decreased the radiation‐induced expression of TGF‐β1 and phosphorylation of Smad3 in alveolar epithelial cells (AECs) and vascular endothelial cells (VECs). Furthermore, IL‐4–induced M2 macrophage polarization and IL‐13–induced M2 macrophage polarization were suppressed by PFD treatment in vitro, resulting in reductions in the release of arginase‐1 (ARG‐1), chitinase 3‐like 3 (YM‐1) and TGF‐β1. Notably, the PFD‐induced inhibitory effects on M2 macrophage polarization were associated with downregulation of nuclear factor kappa‐B (NF‐κB) p50 activity. Additionally, PFD could significantly inhibit ionizing radiation‐induced chemokine secretion in MLE‐12 cells and consequently impair the migration of RAW264.7 cells. PFD could also eliminate TGF‐β1 from M2 macrophages by attenuating the activation of TGF‐β1/Smad3. In conclusion, PFD is a potential therapeutic agent to ameliorate fibrosis in RILF by reducing M2 macrophage infiltration and inhibiting the activation of TGF‐β1/Smad3.  相似文献   

4.
5.
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro‐inflammatory and pro‐adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN‐KO) mice and cultured macrophages. It was found that FKN and Wnt/β‐catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS‐induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β‐catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β‐catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS‐induced AKI. Although LPS‐induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β‐catenin signalling pathway may be a therapeutic target in the treatment of kidney injury.  相似文献   

6.
Glutaminolysis is known to correlate with ovarian cancer aggressiveness and invasion. However, how this affects the tumor microenvironment is elusive. Here, we show that ovarian cancer cells become addicted to extracellular glutamine when silenced for glutamine synthetase (GS), similar to naturally occurring GS‐low, glutaminolysis‐high ovarian cancer cells. Glutamine addiction elicits a crosstalk mechanism whereby cancer cells release N‐acetylaspartate (NAA) which, through the inhibition of the NMDA receptor, and synergistically with IL‐10, enforces GS expression in macrophages. In turn, GS‐high macrophages acquire M2‐like, tumorigenic features. Supporting this in␣vitro model, in silico data and the analysis of ascitic fluid isolated from ovarian cancer patients prove that an M2‐like macrophage phenotype, IL‐10 release, and NAA levels positively correlate with disease stage. Our study uncovers the unprecedented role of glutamine metabolism in modulating macrophage polarization in highly invasive ovarian cancer and highlights the anti‐inflammatory, protumoral function of NAA.  相似文献   

7.
We hypothesized that rapamycin (Rapa), acarbose (ACA), which both increase mouse lifespan, and 17α‐estradiol, which increases lifespan in males (17aE2) all share common intracellular signaling pathways with long‐lived Snell dwarf, PAPPA‐KO, and Ghr−/− mice. The long‐lived mutant mice exhibit reduction in mTORC1 activity, declines in cap‐dependent mRNA translation, and increases in cap‐independent translation (CIT). Here, we report that Rapa and ACA prevent age‐related declines in CIT target proteins in both sexes, while 17aE2 has the same effect only in males, suggesting increases in CIT. mTORC1 activity showed the reciprocal pattern, with age‐related increases blocked by Rapa, ACA, and 17aE2 (in males only). METTL3, required for addition of 6‐methyl‐adenosine to mRNA and thus a trigger for CIT, also showed an age‐dependent increase blunted by Rapa, ACA, and 17aE2 (in males). Diminution of mTORC1 activity and increases in CIT‐dependent proteins may represent a shared pathway for both long‐lived‐mutant mice and drug‐induced lifespan extension in mice.  相似文献   

8.
Preterm birth is a major contributor to neonatal mortality and morbidity. Infection results in elevation of inflammation‐related cytokines followed by infiltration of immune cells into gestational tissue. CXCL12 levels are elevated in preterm birth indicating it may have a role in preterm labour (PTL); however, the pathophysiological correlations between CXCL12/CXCR4 signalling and premature labour are poorly understood. In this study, PTL was induced using lipopolysaccharide (LPS) in a murine model. LPS induced CXCL12 RNA and protein levels significantly and specifically in myometrium compared with controls (3‐fold and 3.5‐fold respectively). Highest levels were found just before the start of labour. LPS also enhanced the infiltration of neutrophils, macrophages and T cells, and induced macrophage M1 polarization. In vitro studies showed that condition medium from LPS‐treated primary smooth muscle cells (SMC) induced macrophage migration, M1 polarization and upregulated inflammation‐related cytokines such as interleukin (IL)‐1, IL‐6 and tumor necrosis factor alpha (TNF‐α). AMD3100 treatment in pregnant mice led to a significant decrease in the rate of PTL (70%), prolonged pregnancy duration and suppressed macrophage infiltration into gestation tissue by 2.5‐fold. Further, in‐vitro treatment of SMC by AMD3100 suppressed the macrophage migration, decreased polarization and downregulated IL‐1, IL‐6 and TNF‐α expression. LPS treatment in pregnant mice induced PTL by increasing myometrial CXCL12, which recruits immune cells that in turn produce inflammation‐related cytokines. These effects stimulated by LPS were completely reversed by AMD3100 through blocking of CXCL12/CXCR4 signalling. Thus, the CXCL12/CXCR4 axis presents an excellent target for preventing infection and inflammation‐related PTL.  相似文献   

9.
Metabolic reprogramming of non‐cancer cells residing in a tumor microenvironment, as a result of the adaptations to cancer‐derived metabolic and non‐metabolic factors, is an emerging aspect of cancer–host interaction. We show that in normal and cancer‐associated fibroblasts, breast cancer‐secreted extracellular vesicles suppress mTOR signaling upon amino acid stimulation to globally reduce mRNA translation. This is through delivery of cancer‐derived miR‐105 and miR‐204, which target RAGC, a component of Rag GTPases that regulate mTORC1 signaling. Following amino acid starvation and subsequent re‐feeding, 13C‐arginine labeling of de novo synthesized proteins shows selective translation of proteins that cluster to specific cellular functional pathways. The repertoire of these newly synthesized proteins is altered in fibroblasts treated with cancer‐derived extracellular vesicles, in addition to the overall suppressed protein synthesis. In human breast tumors, RAGC protein levels are inversely correlated with miR‐105 in the stroma. Our results suggest that through educating fibroblasts to reduce and re‐prioritize mRNA translation, cancer cells rewire the metabolic fluxes of amino acid pool and dynamically regulate stroma‐produced proteins during periodic nutrient fluctuations.  相似文献   

10.
11.
ObjectivesThis study aimed to investigate the protective effect of SCARF1 on acute rejection (AR), phagocytic clearance of Kupffer cells (KCs), M2 polarization and the exact mechanism underlying these processes.MethodsAAV was transfected into the portal vein of rats, and AR and immune tolerance (IT) models of liver transplantation were established. Liver tissue and blood samples were collected. The level of SCARF1 was detected via WB and immunohistochemical staining. Pathological changes in liver tissue were detected using HE staining. Apoptotic cells were detected using TUNEL staining. KC polarization was assessed via immunohistochemical staining. Primary KCs were isolated and co‐cultured with apoptotic T lymphocytes. Phagocytosis of apoptotic cells and polarization of KCs were both detected using immunofluorescence. Calcium concentration was determined using immunofluorescence and a fluorescence microplate reader. The levels of PI3K, p‐AKT and P‐STAT3 were assessed via WB and immunofluorescence.ResultsCompared to the IT group, the level of SCARF1 was significantly decreased in the AR group. Overexpression of SCARF1 in KCs improved AR and liver function markers. Enhanced phagocytosis mediated by SCARF1 is beneficial for improving the apoptotic clearance of AR and promoting M2 polarization of KCs. SCARF1‐mediated enhancement of phagocytosis promotes increased calcium concentration in KCs, thus further activating the PI3K‐AKT‐STAT3 signalling pathway.ConclusionsSCARF1 promotes the M2 polarization of KCs by promoting phagocytosis through the calcium‐dependent PI3K‐AKT‐STAT3 signalling pathway.  相似文献   

12.
Macrophages are fundamental components of inflammation in post‐myocardial infarction (MI) and contribute to adverse cardiac remodelling and heart failure. However, the regulatory mechanisms in macrophage activation have not been fully elucidated. Previous studies showed that myeloid‐associated immunoglobulin–like receptor II (MAIR‐II) is involved in inflammatory responses in macrophages. However, its role in MI is unknown. Thus, this study aimed to determine a novel role and mechanism of MAIR‐II in MI. We first identified that MAIR‐II–positive myeloid cells were abundant from post‐MI days 3 to 5 in infarcted hearts of C57BL/6J (WT) mice induced by permanent left coronary artery ligation. Compared to WT, MAIR‐II–deficient (Cd300c2 −/−) mice had longer survival, ameliorated cardiac remodelling, improved cardiac function and smaller infarct sizes. Moreover, we detected lower pro‐inflammatory cytokine and fibrotic gene expressions in Cd300c2 −/−‐infarcted hearts. These mice also had less infiltrating pro‐inflammatory macrophages following MI. To elucidate a novel molecular mechanism of MAIR‐II, we considered macrophage activation by Toll‐like receptor (TLR) 9–mediated inflammation. In vitro, we observed that Cd300c2 −/− bone marrow–derived macrophages stimulated by a TLR9 agonist expressed less pro‐inflammatory cytokines compared to WT. In conclusion, MAIR‐II may enhance inflammation via TLR9‐mediated macrophage activation in MI, leading to adverse cardiac remodelling and poor prognosis.  相似文献   

13.
14.
ObjectivesIn this study, we study the transplantation of tauroursodeoxycholic acid (TUDCA)‐induced M2‐phenotype (M2) macrophages and their ability to promote anti‐neuroinflammatory effects and functional recovery in a spinal cord injury (SCI) model.MethodsTo this end, compared to the granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), we evaluated whether TUDCA effectively differentiates bone marrow–derived macrophages (BMDMs) into M2 macrophages.ResultsThe M2 expression markers in the TUDCA‐treated BMDM group were increased more than those in the GM‐CSF‐treated BMDM group. After the SCI and transplantation steps, pro‐inflammatory cytokine levels and the mitogen‐activated protein kinase (MAPK) pathway were significantly decreased in the TUDCA‐induced M2 group more than they were in the GM‐CSF‐induced M1 group and in the TUDCA group. Moreover, the TUDCA‐induced M2 group showed significantly enhanced tissue volumes and improved motor functions compared to the GM‐CSF‐induced M1 group and the TUDCA group. In addition, biotinylated dextran amine (BDA)–labelled corticospinal tract (CST) axons and neuronal nuclei marker (NeuN) levels were increased in the TUDCA‐induced M2 group more than those in the GM‐CSF‐induced M1 group and the TUDCA group.ConclusionsThis study demonstrates that the transplantation of TUDCA‐induced M2 macrophages promotes an anti‐neuroinflammatory effect and motor function recovery in SCI. Therefore, we suggest that the transplantation of TUDCA‐induced M2 macrophages represents a possible alternative cell therapy for SCI.  相似文献   

15.
Idiopathic multicentric Castleman disease (iMCD) is a rare and life‐threatening haematologic disorder involving polyclonal lymphoproliferation and organ dysfunction due to excessive cytokine production, including interleukin‐6 (IL‐6). Clinical trial and real‐world data demonstrate that IL‐6 inhibition is effective in 34–50% of patients. mTOR, which functions through mTORC1 and mTORC2, is a recently discovered therapeutic target. The mTOR inhibitor sirolimus, which preferentially inhibits mTORC1, has led to sustained remission in a small cohort of anti‐IL‐6‐refractory iMCD patients with thrombocytopenia, anasarca, fever, renal dysfunction and organomegaly (iMCD‐TAFRO). However, sirolimus has not shown uniform effect, potentially due to its limited mTORC2 inhibition. To investigate mTORC2 activation in iMCD, we quantified the mTORC2 effector protein pNDRG1 by immunohistochemistry of lymph node tissue from six iMCD‐TAFRO and eight iMCD patients who do not meet TAFRO criteria (iMCD‐not‐otherwise‐specified; iMCD‐NOS). mTORC2 activation was increased in all regions of iMCD‐TAFRO lymph nodes and the interfollicular space of iMCD‐NOS compared with control tissue. Immunohistochemistry also revealed increased pNDRG1 expression in iMCD‐TAFRO germinal centres compared with autoimmune lymphoproliferative syndrome (ALPS), an mTOR‐driven, sirolimus‐responsive lymphoproliferative disorder, and comparable staining between iMCD‐NOS and ALPS. These results suggest increased mTORC2 activity in iMCD and that dual mTORC1/mTORC2 inhibitors may be a rational therapeutic approach.  相似文献   

16.
Pyroptosis is a fulminant form of macrophage cell death, contributing to release of pro‐inflammatory cytokines. In humans, it depends on caspase 1/4‐activation of gasdermin D and is characterized by the release of cytoplasmic content. Pathogens apply strategies to avoid or antagonize this host response. We demonstrate here that a small accessory protein (PB1‐F2) of contemporary H5N1 and H3N2 influenza A viruses (IAV) curtails fulminant cell death of infected human macrophages. Infection of macrophages with a PB1‐F2‐deficient mutant of a contemporary IAV resulted in higher levels of caspase‐1 activation, cleavage of gasdermin D, and release of LDH and IL‐1β. Mechanistically, PB1‐F2 limits transition of NLRP3 from its auto‐repressed and closed confirmation into its active state. Consequently, interaction of a recently identified licensing kinase NEK7 with NLRP3 is diminished, which is required to initiate inflammasome assembly.  相似文献   

17.
Stress granules (SGs) are dynamic condensates associated with protein misfolding diseases. They sequester stalled mRNAs and signaling factors, such as the mTORC1 subunit raptor, suggesting that SGs coordinate cell growth during and after stress. However, the molecular mechanisms linking SG dynamics and signaling remain undefined. We report that the chaperone Hsp90 is required for SG dissolution. Hsp90 binds and stabilizes the dual‐specificity tyrosine‐phosphorylation‐regulated kinase 3 (DYRK3) in the cytosol. Upon Hsp90 inhibition, DYRK3 dissociates from Hsp90 and becomes inactive. Inactive DYRK3 is subjected to two different fates: it either partitions into SGs, where it is protected from irreversible aggregation, or it is degraded. In the presence of Hsp90, DYRK3 is active and promotes SG disassembly, restoring mTORC1 signaling and translation. Thus, Hsp90 links stress adaptation and cell growth by regulating the activity of a key kinase involved in condensate disassembly and translation restoration.  相似文献   

18.
Poly(lactide‐co‐glycolide) (PLGA) shows great potentials in biomedical applications, in particular with the field of biodegradable implants and control release technologies. However, there are few systematic and detailed studies on the influence of PLGA degradation behavior on the immunogenicity. In this study, in order to develop a method for dynamically assessing the immunological response of PLGA throughout the implantation process, PLGA particles are fabricated using an o/w single‐emulsion method. The physicochemical characterizations of the prepared PLGA particles during in vitro hydrolytic degradation are investigated. Then, a series of immunological effects triggered by PLGA by‐products formed with degradation process are evaluated, including cell viability, apoptosis, polarization and inflammatory reaction. THP‐1 human cell line is set as in vitro cell model. Our results show that PLGA degradation‐induced acid environment decreases cell viability and increases cell apoptosis, which is a potential factor affecting cell function. In particular, the macrophages exhibit up‐regulations in both M1 subtype related surface markers and pro‐inflammatory cytokines with the degradation process of PLGA, which indicates the degradation products of PLGA can convert macrophages to the pro‐inflammatory (M1) polarization state. All these findings provide the mechanism of PLGA‐induced inflammation and lay the foundation for the design of next‐generation PLGA‐based biomaterials endowed with immunomodulatory functions.  相似文献   

19.
METTL3 is an important regulatory molecule in the process of RNA biosynthesis. It mainly regulates mRNA translation, alternative splicing and microRNA maturation by mediating m6A‐dependent methylation. Interleukin 1β (IL‐1β) is an important inducer of cartilage degeneration that can induce an inflammatory cascade reaction in chondrocytes and inhibit the normal biological function of cells. However, it is unclear whether IL‐1β is related to METTL3 expression or plays a regulatory role in endplate cartilage degeneration. In this study, we found that the expression level of METTL3 and methylation level of m6A in human endplate cartilage with different degrees of degeneration were significantly different, indicating that the methylation modification of m6A mediated by METTL3 was closely related to the degeneration of human endplate cartilage. Next, through a series of functional experiments, we found that miR‐126‐5p can play a significant role in IL‐1β–induced degeneration of endplate chondrocytes. Moreover, we found that miR‐126‐5p can inhibit the PI3K/Akt signalling pathway by targeting PIK3R2 gene, leading to the disorder of cell vitality and functional metabolism. To further determine whether METTL3 could regulate miR‐126‐5p maturation, we first confirmed that METTL3 can bind the key protein underlying pri‐miRNA processing, DGCR8. Additionally, when METTL3 expression was inhibited, the miR‐126‐5p maturation process was blocked. Therefore, we hypothesized that METTL3 can promote cleavage of pri‐miR‐126‐5p and form mature miR‐126‐5p by combining with DGCR8.  相似文献   

20.
Bipolar disorder (BD) is a chronic mood disorder characterized by manic and depressive episodes. Dysregulation of neuroplasticity and calcium homeostasis are frequently observed in BD patients, but the underlying molecular mechanisms are largely unknown. Here, we show that miR‐499‐5p regulates dendritogenesis and cognitive function by downregulating the BD risk gene CACNB2. miR‐499‐5p expression is increased in peripheral blood of BD patients, as well as in the hippocampus of rats which underwent juvenile social isolation. In rat hippocampal neurons, miR‐499‐5p impairs dendritogenesis and reduces surface expression and activity of the L‐type calcium channel Cav1.2. We further identified CACNB2, which encodes a regulatory β‐subunit of Cav1.2, as a direct functional target of miR‐499‐5p in neurons. miR‐499‐5p overexpression in the hippocampus in vivo induces short‐term memory impairments selectively in rats haploinsufficient for the Cav1.2 pore forming subunit Cacna1c. In humans, miR‐499‐5p expression is negatively associated with gray matter volumes of the left superior temporal gyrus, a region implicated in auditory and emotional processing. We propose that stress‐induced miR‐499‐5p overexpression contributes to dendritic impairments, deregulated calcium homeostasis, and neurocognitive dysfunction in BD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号