首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of non-canonical GC base pairs and their relations with mechanochemical cleavage of DNA are analyzed. A hypothesis of the involvement of the transient GC wobble base pairs both in the mechanisms of the mechanochemical cleavage of DNA and epigenetic mechanisms involving of 5-methylcytosine, is proposed. The hypothesis explains the increase in the frequency of the breaks of the sugar-phosphate backbone of DNA after cytosines, the asymmetric character of these breaks, and an increase in break frequency in CpG after cytosine methylation. As an alternative hypothesis, probable implication of GC+ Hoogsteen base pairs is considered, which now exemplify the best-studied non-canonical GC base pairs in the DNA double helix. Also see the video abstract here https://youtu.be/EUunVWL0ptw.  相似文献   

2.
Study of Tissue-Specific CpG Methylation of DNA in Extended Genomic Loci   总被引:2,自引:0,他引:2  
Modern approaches for studies on genome functioning include investigation of its epigenetic regulation. Methylation of cytosines in CpG dinucleotides is an inherited epigenetic modification that is responsible for both functional activity of certain genomic loci and total chromosomal stability. This review describes the main approaches for studies on DNA methylation. Under consideration are site-specific approaches based on bisulfite sequencing and methyl-sensitive PCR, whole-genome approaches aimed at searching for new methylation hot spots, and also mapping of unmethylated CpG sites in extended genomic loci.  相似文献   

3.
Methylation of cytosines at CpG sites is a common epigenetic DNA modification that can be measured by a large number of methods, now even in a genome-wide manner for hundreds of thousands of sites. The application of DNA methylation analysis is becoming widely popular in complex disorders, for example, to understand part of the "missing heritability". The DNA samples most readily available for methylation studies are derived from whole blood. However, blood consists of many functionally and developmentally distinct cell populations in varying proportions. We studied whether such variation might affect the interpretation of methylation studies based on whole blood DNA. We found in healthy male blood donors there is important variation in the methylation profiles of whole blood, mononuclear cells, granulocytes, and cells from seven selected purified lineages. CpG methylation between mononuclear cells and granulocytes differed for 22% of the 8252 probes covering the selected 343 genes implicated in immune-related disorders by genome-wide association studies, and at least one probe was differentially methylated for 85% of the genes, indicating that whole blood methylation results might be unintelligible. For individual genes, even if the overall methylation patterns might appear similar, a few CpG sites in the regulatory regions may have opposite methylation patterns (i.e., hypo/hyper) in the main blood cell types. We conclude that interpretation of whole blood methylation profiles should be performed with great caution and for any differences implicated in a disorder, the differences resulting from varying proportions of white blood cell types should be considered.  相似文献   

4.
Aberrant DNA methylation at CpG dinucleotides can result in epigenetic silencing of tumour suppressor genes and represents one of the earliest events in tumourigenesis. To date, however, high-throughput tools that are capable of surveying the methylation status of multiple gene promoters have been restricted to a limited number of cytosines. Here, we present an oligonucleotide microarray that permits the parallel analysis of the methylation status of individual cytosines, thus combining high throughput and high resolution. The approach was used to study the CpG island in the promoter region of the tumour suppressor gene p16INK4A. In total, 876 oligonucleotide probes of 21 nt in length were used to inspect the methylation status of 53 CpG dinucleotides, producing correct signals in colorectal cancer cell lines as well as control samples with a defined methylation status. The information was validated by established alternative methods. The overall methylation pattern was consistent for each cell line, while different between them. At the level of individual cytosines, however, significant variations between individual cells of the same type were found, but also consistencies across the panel of cancer cell lines were observed.  相似文献   

5.
6.
7.
While cytosine methylation has been widely studied in extant populations, relatively few studies have analyzed methylation in ancient DNA. Most existing studies of epigenetic marks in ancient DNA have inferred patterns of methylation in highly degraded samples using post-mortem damage to cytosines as a proxy for cytosine methylation levels. However, this approach limits the inference of methylation compared with direct bisulfite sequencing, the current gold standard for analyzing cytosine methylation at single nucleotide resolution. In this study, we used direct bisulfite sequencing to assess cytosine methylation in ancient DNA from the skeletal remains of 30 Native Americans ranging in age from approximately 230 to 4500 years before present. Unmethylated cytosines were converted to uracils by treatment with sodium bisulfite, bisulfite products of a CpG-rich retrotransposon were pyrosequenced, and C-to-T ratios were quantified for a single CpG position. We found that cytosine methylation is readily recoverable from most samples, given adequate preservation of endogenous nuclear DNA. In addition, our results indicate that the precision of cytosine methylation estimates is inversely correlated with aDNA preservation, such that samples of low DNA concentration show higher variability in measures of percent methylation than samples of high DNA concentration. In particular, samples in this study with a DNA concentration above 0.015 ng/μL generated the most consistent measures of cytosine methylation. This study presents evidence of cytosine methylation in a large collection of ancient human remains, and indicates that it is possible to analyze epigenetic patterns in ancient populations using direct bisulfite sequencing approaches.  相似文献   

8.
9.
10.
11.
12.
Epigenetic processes, such as DNA methylation, are known to regulate tissue specific gene expression. We explored this concept in the placenta to define whether DNA methylation is cell-type specific. Cytotrophoblasts and fibroblasts were isolated from normal midtrimester placentas. Using immunocytochemistry, we demonstrated 95% purity for cytotrophoblasts and 60–70% for fibroblasts. We compared DNA methylation profiles from cytotrophoblasts, fibroblasts and whole placental villi using bisulfite modified genomic DNA hybridized to the Illumina Methylation27 array. Euclidean cluster analysis of the DNA methylation profiles showed two main clusters, one containing cytotrophoblasts and placenta, the other fibroblasts. Differential methylation analysis identified 442 autosomal CpG sites that differed between cytotrophoblasts and fibroblasts, 315 between placenta and fibroblasts and 61 between placenta and cytotrophoblasts. Three candidate methylation differences were validated by targeted pyrosequencing assays. Pyrosequencing assays were developed for CpG sites less methylated in cytotrophoblasts than fibroblasts mapping to the promoter region of the beta subunit of human chorionic gonadotropin 5 (CGB5), as well as two CpG sites mapping to each of two tumor suppressor genes. Our data suggest that epigenetic regulation of gene expression is likely to be a key factor in the functional specificity of cytotrophoblasts. These data are proof of principle for cell-type specific epigenetic regulation in placenta and demonstrate that the methylation profile of placenta is mainly driven by cytotrophoblasts.Key words: cytotrophoblast purification, placental fibroblast purification, DNA methylation, epigenetics, placenta, cell type-specific methylation  相似文献   

13.
《Genomics》2021,113(5):3050-3057
DNA methylation is one of the main epigenetic mechanisms that regulate gene expression in a manner that depends on the genomic context and varies considerably across taxa. This DNA modification was first found in nuclear genomes of eukaryote several decades ago and it has also been described in mitochondrial DNA. It has recently been shown that mitochondrial DNA is extensively methylated in mammals and other vertebrates. Our current knowledge of mitochondrial DNA methylation in fish is very limited, especially in non-model teleosts. In this study, using whole-genome bisulfite sequencing, we determined methylation patterns within non-CpG (CH) and CpG (CG) contexts in the mitochondrial genome of Nile tilapia, a non-model teleost of high economic importance. Our results demonstrate the presence of mitochondrial DNA methylation in this species predominantly within a non-CpG context, similarly to mammals. We found a strand-specific distribution of methylation, in which highly methylated cytosines were located on the minus strand. The D-loop region had the highest mean methylation level among all mitochondrial loci. Our data provide new insights into the potential role of epigenetic mechanisms in regulating metabolic flexibility of mitochondria in fish, with implications in various biological processes, such as growth and development.  相似文献   

14.
Xu K  Doak TG  Lipps HJ  Wang J  Swart EC  Chang WJ 《Gene》2012,498(1):75-80
Genome-wide methylation studies frequently lack adequate controls to estimate proportions of background reads in the resulting datasets. To generate appropriate control pools, we developed technique termed nMETR (non-methylated tag recovery) based on digestion of genomic DNA with methylation-sensitive restriction enzyme, ligation of adapter oligonucleotide and PCR amplification of non-methylated sites associated with genomic repetitive elements. The protocol takes only two working days to generate amplicons for deep sequencing. We applied nMETR for human DNA using BspFNI enzyme and retrotransposon Alu-specific primers. 454-sequencing enabled identification of 1113 nMETR tag sites, of them ~65% were parts of CpG islands. Representation of reads inversely correlated with methylation levels, thus confirming nMETR fidelity. We created software that eliminates background reads and enables to map and annotate individual tags on human genome. nMETR tags may serve as the controls for large-scale epigenetic studies and for identifying unmethylated transposable elements located close to genomic CpG islands.  相似文献   

15.
DNA methylation is a well-characterized epigenetic modification involved in gene regulation and transposon silencing in mammals. It mainly occurs on cytosines at CpG sites but methylation at non-CpG sites is frequently observed in embryonic stem cells, induced pluriotent stem cells, oocytes and the brain. The biological significance of non-CpG methylation is unknown. Here, we show that non-CpG methylation is also present in male germ cells, within and around B1 retrotransposon sequences interspersed in the mouse genome. It accumulates in mitotically arrested fetal prospermatogonia and reaches the highest level by birth in a Dnmt3l-dependent manner. The preferential site of non-CpG methylation is CpA, especially CpApG and CpApC. Although CpApG (and CpTpG) sites contain cytosines at symmetrical positions, hairpin-bisulfite sequencing reveals that they are hemimethylated, suggesting the absence of a template-dependent copying mechanism. Indeed, the level of non-CpG methylation decreases after the resumption of mitosis in the neonatal period, whereas that of CpG methylation does not. The cells eventually lose non-CpG methylation by the time they become spermatogonia. Our results show that non-CpG methylation accumulates in non-replicating, arrested cells but is not maintained in mitotically dividing cells during male germ-cell development.  相似文献   

16.
17.
DNA methylation was the first epigenetic modification discovered. Until recently, comprehensive coverage of the composition and distribution of methylated cytosines across the genome was lacking. Technological advances, however, are providing methylation maps that can reveal the genomic distribution of DNA methylation in different cell states or phenotypes. The emerging picture includes extensive gene body methylation that is highly conserved in eukaryotes, the presence of DNA methylation in previously unappreciated sequence contexts, and the discovery of another modified DNA base, 5-hydroxymethylcytosine. These new data point to the role of DNA methylation both in gene silencing and gene activation; reconciliation of these seemingly contradictory roles will be essential to fully unravel the biological function of DNA methylation in eukaryotes. Here we review how these recently exposed features of the DNA methylome are challenging previously held dogmas in the field.  相似文献   

18.
Across vertebrate genomes methylation of cytosine residues within the context of CpG dinucleotides is a pervasive epigenetic mark that can impact gene expression and has been implicated in various developmental and disease-associated processes. Several biochemical approaches exist to profile DNA methylation, but recently an alternative approach based on profiling non-methylated CpGs was developed. This technique, called CxxC affinity purification (CAP), uses a ZF-CxxC (CxxC) domain to specifically capture DNA containing clusters of non-methylated CpGs. Here we describe a new CAP approach, called biotinylated CAP (Bio-CAP), which eliminates the requirement for specialized equipment while dramatically improving and simplifying the CxxC-based DNA affinity purification. Importantly, this approach isolates non-methylated DNA in a manner that is directly proportional to the density of non-methylated CpGs, and discriminates non-methylated CpGs from both methylated and hydroxymethylated CpGs. Unlike conventional CAP, Bio-CAP can be applied to nanogram quantities of genomic DNA and in a magnetic format is amenable to efficient parallel processing of samples. Furthermore, Bio-CAP can be applied to genome-wide profiling of non-methylated DNA with relatively small amounts of input material. Therefore, Bio-CAP is a simple and streamlined approach for characterizing regions of the non-methylated DNA, whether at specific target regions or genome wide.  相似文献   

19.
There is a growing body of evidence that epigenetic alterations are involved in the pathological mechanisms of many chronic disorders linked to fetal programming. Angiotensin-converting enzyme (ACE) appears as one candidate gene that brings new insights into the epigenetic control and later development of diseases. In this view, we have postulated that epigenetic modifications in the ACE gene might show different interactions between birth weight (BW), blood pressure levels, plasma ACE activity and ACE I/D polymorphism. To explore this hypothesis, we performed a cross-sectional study to evaluate the DNA methylation of 3 CpG sites using pyrosequencing within the ACE gene promoter of peripheral blood leukocytes from 45 LBW children compared with 70 NBW children. Our results have revealed that LBW children have lower methylation levels (P<0.001) in parallel with a higher ACE activity (P = 0.001). Adjusting for prematurity, gender, age, body mass index, and family history of cardiovascular disease did not alter these findings. We have also performed analyses of individual CpG sites. The frequency of DNA methylation was significantly different at two CpG sites (site 1: nucleotide position +555; and site 3: nucleotide position +563). In addition, we have found a significant inverse correlation between degree of DNA methylation and both ACE activity (P<0.001) and systolic blood pressure levels (P<0.001). We also observed that the methylation level was significantly lower in LBW children who are carriers of the DD genotype compared to NBW children with DD genotype (P<0.024). In conclusion, we are able to demonstrate that the hypomethylation in the 3 CpG sites of ACE gene promoter is associated with LBW in 6 to 12 year-old children. The magnitude of these epigenetic changes appears to be clinically important, which is supported by the observation that discrete changes in DNA methylation can affect systolic blood pressure and ACE protein activity levels.  相似文献   

20.
Monozygotic twins share identical genomic DNA and are indistinguishable using conventional genetic markers. Increasing evidence indicates that monozygotic twins are epigenetically distinct, suggesting that a comparison between DNA methylation patterns might be useful to approach this forensic problem. However, the extent of epigenetic discordance between healthy adult monozygotic twins and the stability of CpG loci within the same individual over a short time span at the whole-genome scale are not well understood. Here, we used Infinium HumanMethylation450 Beadchips to compare DNA methylation profiles using blood collected from 10 pairs of monozygotic twins and 8 individuals sampled at 0, 3, 6, and 9 months. Using an effective and unbiased method for calling differentially methylated (DM) CpG sites, we showed that 0.087%–1.530% of the CpG sites exhibit differential methylation in monozygotic twin pairs. We further demonstrated that, on whole-genome level, there has been no significant epigenetic drift within the same individuals for up to 9 months, including one monozygotic twin pair. However, we did identify a subset of CpG sites that vary in DNA methylation over the 9-month period. The magnitude of the intra-pair or longitudinal methylation discordance of the CpG sites inside the CpG islands is greater than those outside the CpG islands. The CpG sites located on shores appear to be more suitable for distinguishing between MZ twins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号