首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in ecological preference, often driven by spatial and temporal variation in resource distribution, can expose populations to environments with divergent information content. This can lead to adaptive changes in the degree to which individuals invest in sensory systems and downstream processes, to optimize behavioural performance in different contexts. At the same time, environmental conditions can produce plastic responses in nervous system development and maturation, providing an alternative route to integrating neural and ecological variation. Here, we explore how these two processes play out across a community of Heliconius butterflies. Heliconius communities exhibit multiple Mullerian mimicry rings, associated with habitat partitioning across environmental gradients. These environmental differences have previously been linked to heritable divergence in brain morphology in parapatric species pairs. They also exhibit a unique dietary adaptation, known as pollen feeding, that relies heavily on learning foraging routes, or trap-lines, between resources, which implies an important environmental influence on behavioural development. By comparing brain morphology across 133 wild-caught and insectary-reared individuals from seven Heliconius species, we find strong evidence for interspecific variation in patterns of neural investment. These largely fall into two distinct patterns of variation; first, we find consistent patterns of divergence in the size of visual brain components across both wild and insectary-reared individuals, suggesting genetically encoded divergence in the visual pathway. Second, we find interspecific differences in mushroom body size, a central component of learning and memory systems, but only among wild caught individuals. The lack of this effect in common-garden individuals suggests an extensive role for developmental plasticity in interspecific variation in the wild. Finally, we illustrate the impact of relatively small-scale spatial effects on mushroom body plasticity by performing experiments altering the cage size and structure experienced by individual H. hecale. Our data provide a comprehensive survey of community level variation in brain structure, and demonstrate that genetic effects and developmental plasticity contribute to different axes of interspecific neural variation.  相似文献   

2.
The social brain hypothesis assumes the evolution of social behaviour changes animals'' ecological environments, and predicts evolutionary shifts in social structure will be associated with changes in brain investment. Most social brain models to date assume social behaviour imposes additional cognitive challenges to animals, favouring the evolution of increased brain investment. Here, we present a modification of social brain models, which we term the distributed cognition hypothesis. Distributed cognition models assume group members can rely on social communication instead of individual cognition; these models predict reduced brain investment in social species. To test this hypothesis, we compared brain investment among 29 species of wasps (Vespidae family), including solitary species and social species with a wide range of social attributes (i.e. differences in colony size, mode of colony founding and degree of queen/worker caste differentiation). We compared species means of relative size of mushroom body (MB) calyces and the antennal to optic lobe ratio, as measures of brain investment in central processing and peripheral sensory processing, respectively. In support of distributed cognition predictions, and in contrast to patterns seen among vertebrates, MB investment decreased from solitary to social species. Among social species, differences in colony founding, colony size and caste differentiation were not associated with brain investment differences. Peripheral lobe investment did not covary with social structure. These patterns suggest the strongest changes in brain investment—a reduction in central processing brain regions—accompanied the evolutionary origins of eusociality in Vespidae.  相似文献   

3.
4.
The shape of comparable tissues and organs is consistent among individuals of a given species, but how this consistency or robustness is achieved remains an open question. The interaction between morphogenetic factors determines organ formation and subsequent shaping, which is ultimately a mechanical process. Using a computational approach, we show that the epidermal layer is essential for the robustness of organ geometry control. Specifically, proper epidermal restriction allows organ asymmetry maintenance, and the tensile epidermal layer is sufficient to suppress local variability in growth, leading to shape robustness. The model explains the enhanced organ shape variations in epidermal mutant plants. In addition, differences in the patterns of epidermal restriction may underlie the initial establishment of organ asymmetry. Our results show that epidermal restriction can answer the longstanding question of how cellular growth noise is averaged to produce precise organ shapes, and the findings also shed light on organ asymmetry establishment.  相似文献   

5.
Hominin evolution saw the emergence of two traits—bipedality and encephalization—that are fundamentally linked because the fetal head must pass through the maternal pelvis at birth, a scenario termed the ‘obstetric dilemma’. While adaptive explanations for bipedality and large brains address adult phenotype, it is brain and pelvic growth that are subject to the obstetric dilemma. Many contemporary populations experience substantial maternal and perinatal morbidity/mortality from obstructed labour, yet there is increasing recognition that the obstetric dilemma is not fixed and is affected by ecological change. Ecological trends may affect growth of the pelvis and offspring brain to different extents, while the two traits also differ by a generation in the timing of their exposure. Two key questions arise: how can the fit between the maternal pelvis and the offspring brain be ‘renegotiated’ as the environment changes, and what nutritional signals regulate this process? I argue that the potential for maternal size to change across generations precludes birthweight being under strong genetic influence. Instead, fetal growth tracks maternal phenotype, which buffers short-term ecological perturbations. Nevertheless, rapid changes in nutritional supply between generations can generate antagonistic influences on maternal and offspring traits, increasing the risk of obstructed labour.  相似文献   

6.
The evolutionary origins of genetic robustness are still under debate: it may arise as a consequence of requirements imposed by varying environmental conditions, due to intrinsic factors such as metabolic requirements, or directly due to an adaptive selection in favor of genes that allow a species to endure genetic perturbations. Stratifying the individual effects of each origin requires one to study the pertaining evolutionary forces across many species under diverse conditions. Here we conduct the first large-scale computational study charting the level of robustness of metabolic networks of hundreds of bacterial species across many simulated growth environments. We provide evidence that variations among species in their level of robustness reflect ecological adaptations. We decouple metabolic robustness into two components and quantify the extents of each: the first, environmental-dependent, is responsible for at least 20% of the non-essential reactions and its extent is associated with the species'' lifestyle (specialized/generalist); the second, environmental-independent, is associated (correlation = ∼0.6) with the intrinsic metabolic capacities of a species—higher robustness is observed in fast growers or in organisms with an extensive production of secondary metabolites. Finally, we identify reactions that are uniquely susceptible to perturbations in human pathogens, potentially serving as novel drug-targets.  相似文献   

7.
Despite their importance in shaping life history tactics and population dynamics, individual growth trajectories have only been rarely explored in the wild because their analysis requires multiple measurements of individuals throughout their lifetime and some knowledge of age, a key timer of body growth. The availability of long‐term longitudinal studies of two wild boar populations subjected to contrasting environments (rich vs. poor) provided an opportunity to analyze individual growth trajectories. We quantified wild boar growth trajectories at both the population and the individual levels using standard growth models (i.e., Gompertz, logistic, and monomolecular models) that encompass the expected range of growth shapes in determinate growers. Wild boar is a rather altricial species, with a polygynous mating system and is strongly sexually dimorphic in size. According to current theories of life history evolution, we thus expect wild boar to display a sex‐specific Gompertz type growth trajectory and lower sexual size dimorphism in the poorer environment. While wild boar displayed the expected Gompertz type trajectory in the rich site at the population level, we found some evidence for potential differences in growth shapes between populations and individuals. Asymptotic body mass, growth rate and timing of maximum growth rate differed as well, which indicates a high flexibility of growth in wild boar. We also found a cohort effect on asymptotic body mass, which suggests that environmental conditions early in life shape body mass at adulthood in this species. Our findings demonstrate that body growth trajectories in wild boar are highly diverse in relation to differences of environmental context, sex and year of birth. Whether the intermediate ranking of wild boar along the precocial–altricial continuum of development at birth may explain the ability of this species to exhibit this high diversity of growth patterns remains to be investigated.  相似文献   

8.
Making bigger plants: key regulators of final organ size   总被引:1,自引:0,他引:1  
Organ growth in plants is controlled by both genetic factors and environmental inputs. Recent progress has been made in identifying genetic determinants of final organ size and in characterizing a pathway that may link organ growth with environmental conditions. Some identified growth regulatory factors act downstream of plant hormones, while others appear to be components of novel signaling pathways. Additional characterization of these proteins is needed before we can understand how growth-promoting and growth-restricting inputs are integrated to coordinate growth within a developing organ. Some parallels in the mechanisms used by plants and animals to regulate organ size are suggested by the identification of KLUH, a noncell-autonomous regulator of organ growth, and by similarities in the target of rapamycin (TOR)-signaling pathway.  相似文献   

9.
Adult size, egg size, fecundity, and mass of gonads are affected by trade‐offs between reproductive investment and environmental conditions shaping the evolution of life history traits among populations for widely distributed species. Coho salmon Oncorhynchus kisutch have a large geographic distribution, and different environmental conditions are experienced by populations throughout their range. We examined the effect of environmental variables on female size, egg size, fecundity, and reproductive investment of populations of Coho Salmon from across British Columbia using an information theoretic approach. Female size increased with latitude and decreased with migration distance from the ocean to spawning locations. Egg size was lowest for intermediate intragravel temperature during incubation, decreased with migration distance, but increased in rivers below lakes. Fecundity increased with latitude, warmer temperature during the spawning period, and river size, but decreased in rivers below lakes compared with rivers with tributary sources. Relative gonad size increased with latitude and decreased with migration distance. Latitude of spawning grounds, migratory distance, and temperatures experienced by a population, but also hydrologic features—river size and headwater source—are influential in shaping patterns of reproductive investment, particularly egg size. Although, relative gonad size varied with latitude and migration distance, how gonadal mass was partitioned gives insight into the trade‐off between egg size and fecundity. The lack of an effect of latitude on egg size suggests that local optima for egg size related to intragravel temperature may drive the variation in fecundity observed among years.  相似文献   

10.
We examined the effects of behaviour, age and social environment on mushroom body volume in adult bees. The mushroom bodies are regions of the central brain important for sensory integration and learning. Their volume was influenced by behaviour throughout life: always larger in forager bees than age-matched nurse bees, even in old bees up to 93 days of age as adults. Mushroom body development was influenced by the social environment in the first 8 days of adult life, with different environments having markedly different effects on mushroom body size. Compared to hive-reared bees, isolation slowed mushroom body growth, but bees reared in isolation confined with a single dead bee showed a dramatic increase in mushroom body volume comparable to that seen in active foragers. Despite their precocious mushroom body development, these bees did not show improved performance in an olfactory learning test. Since simple environmental manipulations can both accelerate and delay mushroom body growth in young bees, and since mushroom body volume is sensitive to behaviour throughout life, the honey bee has great potential as a model for exploring the interactions between environment, behaviour and brain structure.  相似文献   

11.
Body size is one of the features that distinguish one species from another in the biological world. Animals have developed mechanisms to control their body size during normal development. However, how animals cope with genetic alterations and/or environmental stresses to develop into normal-sized adults remain poorly understood. The ability of the animals to develop into a normal-sized adult after the challenges of genetic alterations and/or environmental stresses reveals a robustness of body size control. Here we show that the mutation of dGPAT4, a de novo synthase of lysophosphatidic acid, is a genetic alteration that triggers such a robust response of the animals to body size challenges in Drosophila. Loss of dGPAT4 leads to a severe delay of development, slow growth and resultant small-sized animals during the larval stages, but results in normal-sized adult flies. The robust body size adjustment of the dGPAT4 mutant is likely achieved by corresponding changes in ecdysone and insulin signaling, which is also manifested by compromised food intake. Thus, we propose that a strategy has been evolved by the animals to reach final body size when challenged by genetic alterations, which requires the coordinated ecdysone and insulin signaling.  相似文献   

12.
Recent studies have indicated that the insulin-signaling pathway controls body and organ size in Drosophila, and most metazoans, by signaling nutritional conditions to the growing organs. The temporal requirements for insulin signaling during development are, however, unknown. Using a temperature-sensitive insulin receptor (Inr) mutation in Drosophila, we show that the developmental requirements for Inr activity are organ specific and vary in time. Early in development, before larvae reach the “critical size” (the size at which they commit to metamorphosis and can complete development without further feeding), Inr activity influences total development time but not final body and organ size. After critical size, Inr activity no longer affects total development time but does influence final body and organ size. Final body size is affected by Inr activity from critical size until pupariation, whereas final organ size is sensitive to Inr activity from critical size until early pupal development. In addition, different organs show different sensitivities to changes in Inr activity for different periods of development, implicating the insulin pathway in the control of organ allometry. The reduction in Inr activity is accompanied by a two-fold increase in free-sugar levels, similar to the effect of reduced insulin signaling in mammals. Finally, we find that varying the magnitude of Inr activity has different effects on cell size and cell number in the fly wing, providing a potential linkage between the mode of action of insulin signaling and the distinct downstream controls of cell size and number. We present a model that incorporates the effects of the insulin-signaling pathway into the Drosophila life cycle. We hypothesize that the insulin-signaling pathway controls such diverse effects as total developmental time, total body size and organ size through its effects on the rate of cell growth, and proliferation in different organs.  相似文献   

13.
Environmental conditions experienced during early life may have long‐lasting effects on later‐life phenotypes and fitness. Individuals experiencing poor early‐life conditions may suffer subsequent fitness constraints. Alternatively, individuals may use a strategic “Predictive Adaptive Response” (PAR), whereby they respond—in terms of physiology or life‐history strategy—to the conditions experienced in early life to maximize later‐life fitness. Particularly, the Future Lifespan Expectation (FLE) PAR hypothesis predicts that when poor early‐life conditions negatively impact an individual''s physiological state, it will accelerate its reproductive schedule to maximize fitness during its shorter predicted life span. We aimed to measure the impact of early‐life conditions and resulting fitness across individual lifetimes to test predictions of the FLE hypothesis in a wild, long‐lived model species. Using a long‐term individual‐based dataset, we investigated how early‐life conditions are linked with subsequent fitness in an isolated population of the Seychelles warbler Acrocephalus sechellensis. How individuals experience early‐life environmental conditions may vary greatly, so we also tested whether telomere length—shorter telomers are a biomarker of an individual''s exposure to stress—can provide an effective measure of the individual‐specific impact of early‐life conditions. Specifically, under the FLE hypothesis, we would expect shorter telomeres to be associated with accelerated reproduction. Contrary to expectations, shorter juvenile telomere length was not associated with poor early‐life conditions, but instead with better conditions, probably as a result of faster juvenile growth. Furthermore, neither juvenile telomere length, nor other measures of early‐life conditions, were associated with age of first reproduction or the number of offspring produced during early life in either sex. We found no support for the FLE hypothesis. However, for males, poor early‐life body condition was associated with lower first‐year survival and reduced longevity, indicating that poor early‐life conditions pose subsequent fitness constraints. Our results also showed that using juvenile telomere length as a measure of early‐life conditions requires caution, as it is likely to not only reflect environmental stress but also other processes such as growth.  相似文献   

14.
Stern D 《Current biology : CB》2003,13(7):R267-R269
Insulin signaling controls organ growth and final body size in insects. Recent results have begun to clarify how insulin signaling drives organ growth to match nutrient levels, but have not yet elucidated how insulin signaling controls final body size.  相似文献   

15.
The concept of home ranges is fundamental to ecology. Numerous studies have quantified how home ranges scale with body size across taxa. However, these relationships are not always applicable intraspecifically. Here, we describe how the home range of an important group of reef fish, the parrotfishes, scales with body mass. With masses spanning five orders of magnitude, from the early postsettlement stage through to adulthood, we find no evidence of a response to predation risk, dietary shifts or sex change on home range expansion rates. Instead, we document a distinct ontogenetic shift in home range expansion with sexual maturity. Juvenile parrotfishes displayed rapid home range growth until reaching approximately 100–150 mm length. Thereafter, the relationship between home range and mass broke down. This shift reflected changes in colour patterns, social status and reproductive behaviour associated with the transition to adult stages. While there is a clear relationship between body mass and home ranges among adult individuals of different species, it does not appear to be applicable to size changes within species. Ontogenetic changes in parrotfishes do not follow expected mass–area scaling relationships.  相似文献   

16.
Organisms may reduce uncertainty regarding how best to exploit their environment by collecting information about resource distribution. We develop a model to demonstrate how competition can facilitate or constrain an individual''s ability to use information when acquiring resources. As resource distribution underpins both selection on information use and the strength and nature of competition between individuals, we demonstrate interdependencies between the two that should be common in nature. Individuals in our model can search for resources either personally or by using social information. We explore selection on social information use across a comprehensive range of ecological conditions, generalizing the producer–scrounger framework to a wide diversity of taxa and resources. We show that resource ecology—defined by scarcity, depletion rate and monopolizability—determines patterns of individual differences in social information use. These differences suggest coevolutionary processes linking dominance systems and social information use, with implications for the evolutionary demography of populations.  相似文献   

17.
The present study aimed to determine the effects of breed and sex on growth patterns and metabolic features of advanced-pregnancy foetuses exposed to the same environmental conditions. Thus, at Day 62 of pregnancy, swine foetuses from an obese breed with leptin resistance (Iberian breed) were compared to lean crossbred foetuses (25% Large White ×25% Landrace ×50% Pietrain). There were differential developmental patterns in foetuses with leptin resistance, mainly a higher relative weight of the brain resembling “brain-sparing effect”. Prioritization of brain growth may be protective for the adequate growth and postnatal survival of the Iberian individuals, an ancient breed reared in extensive semi-feral conditions for centuries. There were also clear sex-related differences in foetal development and metabolism in the Iberian breed. Female Iberian foetuses were similar in size and weight to male littermates but had a significantly higher relative liver to body weight ratio resembling “liver-sparing effect” and a trend for a higher relative intestine to body ratio. Moreover, the availability of triglycerides, cholesterol and IL-6 in female Iberian foetuses was similar to that of lean crossbred foetuses. Overall, these features may favour a better postnatal survival and development of females, the sex more critical for the species survival. These findings set the basis for future translational studies aimed at increasing the knowledge on the interaction between genetic and environmental factors in the early programming of the adult phenotype.  相似文献   

18.
Phenotypic plasticity is predicted to evolve in more variable environments, conferring an advantage on individual lifetime fitness. It is less clear what the potential consequences of that plasticity will have on ecological population dynamics. Here, we use an invertebrate model system to examine the effects of environmental variation (resource availability) on the evolution of phenotypic plasticity in two life history traits—age and size at maturation—in long‐running, experimental density‐dependent environments. Specifically, we then explore the feedback from evolution of life history plasticity to subsequent ecological dynamics in novel conditions. Plasticity in both traits initially declined in all microcosm environments, but then evolved increased plasticity for age‐at‐maturation, significantly so in more environmentally variable environments. We also demonstrate how plasticity affects ecological dynamics by creating founder populations of different plastic phenotypes into new microcosms that had either familiar or novel environments. Populations originating from periodically variable environments that had evolved greatest plasticity had lowest variability in population size when introduced to novel environments than those from constant or random environments. This suggests that while plasticity may be costly it can confer benefits by reducing the likelihood that offspring will experience low survival through competitive bottlenecks in variable environments. In this study, we demonstrate how plasticity evolves in response to environmental variation and can alter population dynamics—demonstrating an eco‐evolutionary feedback loop in a complex animal moderated by plasticity in growth.  相似文献   

19.
Functional rarity (FR) — a feature combining a species'' rarity with the distinctiveness of its traits — is a promising tool to better understand the ecological importance of rare species and consequently to protect functional diversity more efficiently. However, we lack a systematic understanding of FR on both the species level (which species are functionally rare and why) and the community level (how is FR associated with biodiversity and environmental conditions). Here, we quantify FR for 218 plant species from German hay meadows on a local, regional, and national scale by combining data from 6500 vegetation relevés and 15 ecologically relevant traits. We investigate the association between rarity and trait distinctiveness on different spatial scales via correlation measures and show which traits lead to low or high trait distinctiveness via distance‐based redundancy analysis. We test how species richness and FR are correlated, and use boosted regression trees to determine environmental conditions that are driving species richness and FR. On the local scale, only rare species showed high trait distinctiveness while on larger spatial scales rare and common species showed high trait distinctiveness. As infrequent trait attributes (e.g., legumes, low clonality) led to higher trait distinctiveness, we argue that functionally rare species are either specialists or transients. While specialists occupy a particular niche in hay meadows leading to lower rarity on larger spatial scales, transients display distinct but maladaptive traits resulting in high rarity across all spatial scales. More functionally rare species than expected by chance occurred in species‐poor communities indicating that they prefer environmental conditions differing from characteristic conditions of species‐rich hay meadows. Finally, we argue that functionally rare species are not necessarily relevant for nature conservation because many were transients from surrounding habitats. However, FR can facilitate our understanding of why species are rare in a habitat and under which conditions these species occur.  相似文献   

20.
Individual cuttlefish, octopus and squid have the versatile capability to use body patterns for background matching and disruptive coloration. We define—qualitatively and quantitatively—the chief characteristics of the three major body pattern types used for camouflage by cephalopods: uniform and mottle patterns for background matching, and disruptive patterns that primarily enhance disruptiveness but aid background matching as well. There is great variation within each of the three body pattern types, but by defining their chief characteristics we lay the groundwork to test camouflage concepts by correlating background statistics with those of the body pattern. We describe at least three ways in which background matching can be achieved in cephalopods. Disruptive patterns in cuttlefish possess all four of the basic components of ‘disruptiveness’, supporting Cott''s hypotheses, and we provide field examples of disruptive coloration in which the body pattern contrast exceeds that of the immediate surrounds. Based upon laboratory testing as well as thousands of images of camouflaged cephalopods in the field (a sample is provided on a web archive), we note that size, contrast and edges of background objects are key visual cues that guide cephalopod camouflage patterning. Mottle and disruptive patterns are frequently mixed, suggesting that background matching and disruptive mechanisms are often used in the same pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号