首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gastric cancer (GC) is one of the most common human malignancies worldwide, but the molecular mechanism of GC has not been fully elucidated. Tetraspanin 31 (TSPAN31) has been rarely studied in human malignant tumors. This study aimed to investigate the effects of TSPAN31 on GC. We analyzed GC tissues through high-throughput sequencing technology and chose TSPAN31 with high expression. The expression of TSPAN31 in GC was analyzed through bioinformatics website and qRT-PCR. The protein level of TSPAN31 in GC tissues was determined by western blot and immunochemistry. The proliferation, migration, and apoptosis of GC cells were detected by the cell counting kit-8, transwell, and apoptosis experiments. METTL1 and CCT2 that may co-express with TSPAN31 were predicted by the GEPIA database, and analyzed the correlation between the expression levels of TSPAN31, METTL1 and CCT2. The results shows TSPAN31 was highly expressed in GC tissues, and high expression of TSPAN31 was found to result in poor prognosis of patients with GC. TSPAN31 could regulate the proliferation, migration and apoptosis of GC cells. The relative expression levels of TSPAN31, METTL1 and CCT2 in GC were positively correlated. Low expression of TSPAN31 could partially reverse the effect of high expression of METTL1 and CCT2 on the tumor progression of GC cells. In conclusion, TSPAN31 was highly expressed in GC tissues and led to poor prognosis of patients with GC. TSPAN31 may regulate the proliferation, migration, and apoptosis of GC cells. This regulatory mechanism may be achieved through co-expression with METTL1 and CCT2.  相似文献   

3.
Abnormal expression of CXC motif chemokine ligand 16 (CXCL16) has been demonstrated to be associated with tumor progression and metastasis, served as a prognostic factor in many cancers, with higher relative expression behaving as a marker of tumor progression. However, its role and mechanisms underlying progression and metastasis of gastric cancer (GC) are yet to be elucidated. In our investigation, public datasets and human GC tissue samples were used to determine the CXCL16 expression levels. Our results revealed that CXCL16 was upregulated in GC. The high expression CXCL16 in GC was significantly associated with histologic poor differentiation and pTNM staging. And high CXCL16 was positively correlated with the poor survival of GC patients. Gain-and loss-of-function experiments were employed to investigate the biological role of CXCL16 in proliferation and migration both in vitro and in vivo. Mechanically, Gene set enrichment analysis (GSEA) revealed that the epithelial‑mesenchymal transition (EMT), Akt and MAPK signal pathway related genes were significantly enriched in the high CXCL16 group, which was confirmed by western blot. Moreover, overexpression CXCL16 promoted the disintegrin and metalloproteases (ADAM10) and the CXC motif chemokine receptor 6 (CXCR6) expression, which mediated the CXCL16/CXCR6 positive feedback loop in GC, with activating Akt and MAPK signaling pathways. Knocking down ADAM10 would interrupted the CXCL16/CXCR6 axis in the carcinogenesis and progression of GC. In conclusion, our findings offered insights into that CXCL16 promoted GC tumorigenesis by enhancing ADAM10-dependent CXCL16/CXCR6 axis activation.  相似文献   

4.
Gastric cancer (GC) is one of the most common cancers worldwide and has especially high morbidity and mortality in China. LEM domain containing 1 (LEMD1), an important cancer-testis antigen, has been reported to be overexpressed in various cancers and promotes the progression of cancers. However, the biological characteristics of LEMD1 remain to be explored in GC. The connection between LEMD1 expression and GC progression was analyzed by using The Cancer Genome Atlas datasets and our human microarray datasets. A Kaplan-Meier plot was used to analyze the relationship between LEMD1 expression and prognosis. The expression of LEMD1 was analyzed by quantitative real-time polymerase chain reaction and Western blot, and the proliferation ability of GC cells was analyzed by cell proliferation and colony formation assays and 5-ethynyl-2′-deoxyuridine analysis. The cell cycle and apoptosis were analyzed by flow cytometry. Furthermore, subcutaneously implanted tumor models in nude mice were used to demonstrate the role of LEMD1 in promoting tumor proliferation in vivo. In this study, we demonstrated that the LEMD1 expression level was increased in GC tissues and cells compared with normal tissues and GES-1. The in vivo and in vitro assays showed that LEMD1 promoted GC cell proliferation by regulating the cell cycle and apoptosis. Moreover, we showed that LEMD1 regulated cell proliferation by activating the phosphatidylinositol 3 kinase (PI3K) / protein kinase B (AKT) signaling pathway. Overall, the results of our study suggest that LEMD1 contributes to GC proliferation by regulating the cell cycle and apoptosis via activation of the PI3K/AKT signaling pathway. LEMD1 may act as a potential target for GC treatment.  相似文献   

5.
Mounting evidence has illustrated the vital roles of long non‐coding RNAs (lncRNAs in gastric cancer (GC). Nevertheless, the majority of their roles and mechanisms in GC are still largely unknown. In this study, we investigate the roles of lncRNA SLC25A5‐AS1 on tumourigenesis and explore its potential mechanisms in GC. The results showed that the expressions of SLC25A5‐AS1 in GC were significantly lower than that of adjacent normal tissues, which were significantly associated with tumour size, TNM stage and lymph node metastasis. Moreover, SLC25A5‐AS1 could inhibit GC cell proliferation, induce G1/G1 cell cycle arrest and cell apoptosis in vitro, as well as GC growth in vivo. Dual‐luciferase reporter assay confirmed the direct interaction between SLC25A5‐AS1 and miR‐19a‐3p, rescue experiment showed that co‐transfection miR‐19a‐3p mimics and pcDNA‐SLC25A5‐AS1 could partially restore the ability of GC cell proliferation and the inhibition of cell apoptosis. The mechanism analyses further found that SLC25A5‐AS1 might act as a competing endogenous RNAs (ceRNA), which was involved in the derepression of PTEN expression, a target gene of miR‐19a‐3p, and regulate malignant phenotype via PI3K/AKT signalling pathway in GC. Taken together, this study indicated that SLC25A5‐AS1 was down‐regulated in GC and functioned as a suppressor in the progression of GC. Moreover, it could act as a ceRNA to regulate cellular behaviours via miR‐19a‐3p/PTEN/PI3K/AKT signalling pathway. Thus, SLC25A5‐AS1 might be served as a potential target for cancer therapeutics in GC.  相似文献   

6.
7.
The role of miR-26a in cancer cells seemed controversial in previous studies. Until now, the role of miR-26a in gastric cancer remains undefined. In this study, we found that miR-26a was strongly downregulated in gastric cancer (GC) tissues and cell lines, and its expression levels were associated with lymph node metastasis and clinical stage, as well as overall survival and replase-free survival of GC. We also found that ectopic expression of miR-26a inhibited GC cell proliferation and GC metastasis in vitro and in vivo. We further identified a novel mechanism of miR-26a to suppress GC growth and metastasis. FGF9 was proved to be a direct target of miR-26a, using luciferase assay and western blot. FGF9 overexpression in miR-26a-expressing cells could rescue invasion and growth defects of miR-26a. In addition, miR-26a expression inversely correlated with FGF9 protein levels in GC. Taken together, our data suggest that miR-26a functions as a tumor suppressor in GC development and progression, and holds promise as a prognostic biomarker and potential therapeutic target for GC.  相似文献   

8.
miR-141 belongs to the miR-200 family, and has been found to be associated with numerous human malignancies; however, its role in gastric cancer (GC) has not been examined in detail. Here, we validated that miR-141 was decreased in GC tissues and cell lines. Forced expression of miR-141 significantly repressed GC cell proliferation and colony formation. Furthermore, miR-141 suppressed in vitro migration and invasion of GC cells. Hepatoma-derived growth factor (HDGF) was confirmed to be a direct target of miR-141 in GC cells. The suppressive effects of miR-141 on GC cell proliferation, colony formation, in vitro migration, and invasion were partially mediated by suppressing HDGF expression. Moreover, the expression of HDGF was negatively correlated with miR-141 in GC tissues. Our data suggest that miR-141 might be associated and plays essential role in GC progression.  相似文献   

9.
10.
LncRNA RP11-363E7.4 has been shown to be downregulated in gastric cancer (GC), while the effect of lncRNA RP11-363E7.4 on GC and its potential molecular mechanisms is unclear. The purpose of this study was to explore the functional role and underlying molecular mechanisms of lncRNA RP11-363E7.4 involved in GC progress.To address the question, quantitative real-time PCR assay was performed to confirm lncRNA RP11-363E7.4 expression levels in GC tissues and cell lines. Cell proliferation, apoptosis, migration and invasion were estimated using Cell Counting Kit-8, colony formation, scratch wound healing and Transwell assays. Potential molecular mechanisms were evaluated using western blot assay. The results showed that lncRNA RP11-363E7.4 was significantly downregulated in GC cell lines and 82 paired tissues. The correlation between expression and clinicopathological features indicated that low expression of lncRNA RP11-363E7.4 was associated with T stage (P = .010). Functional experiments showed that overexpression of lncRNA RP11-363E7.4 prevented proliferation, migration, and invasion and induced apoptosis of GC cells. Western blot assay revealed that lncRNA RP11-363E7.4 functioned via the p53, Bax/Bcl-2, β-catenin pathway. In summary, this study revealed that lncRNA RP11-363E7.4 functioned as a tumour suppressor by inhibiting proliferation, migration, and invasion and inducing apoptosis of GC cells. Significance of the study :LncRNA RP11-363E7.4 has been shown to be downregulated in GC, while the effect of lncRNA RP11-363E7.4 on GC and its potential molecular mechanism is unclear. We revealed that lncRNA RP11-363E7.4 functioned as a tumour suppressor by inhibiting proliferation, migration, and invasion and inducing apoptosis of GC cells. LncRNA RP11-363E7.4 might become an attractive diagnostic and prognostic biomarker of GC and a promising target for GC treatment.  相似文献   

11.
LncRNA HCP5 has been confirmed to play crucial roles in many types of cancers. However, the role of lncRNA HCP5 in regulating the occurrence and development of gastric cancer (GC) remains unknown. In the current study, we aimed to investigate the precise effects of lncRNA HCP5 on cell proliferation, migration and invasion and molecular mechanisms in gastric cancer. Using RT-qPCR analysis, we found that lncRNA HCP5 was differentially expressed in GC cell lines. CCK-8, wound healing and transwell assay indicated that the proliferation, migration and invasion of gastric cancer cells were inhibited by downregulation of lncRNA HCP5 and lncRNA HCP5 overexpression exhibited the opposite effects in gastric cancer cells. Mechanistically, RNA binding protein immunoprecipitation and dual luciferase reporter assay confirmed the interaction between lncRNA HCP5 and DDX21. The effects of lncRNA HCP5 overexpression the proliferation, migration and invasion of GC cells were partly rescued by DDX21 silencing. Taken together, downregulation of lncRNA HCP5 exerted inhibitory effects on GC cell proliferation, migration and invasion through modulation of DDX21 expression, demonstrating the function of lncRNA HCP5 and DDX21 in GC progression.  相似文献   

12.
In spite of the achievement in treatment, the gastric cancer (GC) mortality still remains high. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play a crucial part in tumor progression. In this study, we explored the expression and function of microRNA-501-5p (miR-501-5p) in GC cell lines. Quantitative real-time polymerase chain reaction assay results suggested that miR-501-5p was significantly upregulated in GC tissues and cell lines. And, the Cell Counting Kit-8 colony formation and cell migration assay results showed that the downregulation of miR-501-5p decreased GC cell proliferation and migration. Besides that, we found that GC cell cycle was arrested in G2 phase and cell apoptosis rate was increased by silencing the expression of miR-501-5p in GC cell lines using the flow cytometry. We also found that miR-501-5p could directly target lysophosphatidic acid receptor 1 (LPAR1) and negatively regulate LPAR1 expression in GC cell lines by performing dual-luciferase reporter gene assay and Western blot analysis. And, LPAR1 was significantly downregulated in GC tissues and inversely correlated with miR-501-5p expression. Furthermore, LPAR1 downregulation promoted cell proliferation and migration, which were attenuated by cotransfection of miR-501-5p inhibitor in GC cells. In conclusion, miR-501-5p can promote GC cell proliferation and migration by targeting and downregulating LPAR1. miR-501-5p/LPAR1 may become a potential therapeutic target for GC treatment.  相似文献   

13.
14.
15.
LAMP2A is the key protein of chaperone-mediated autophagy (CMA), downregulation of LAMP2A leads to CMA blockade. CMA activation has been implicated in cancer growth, but the exact mechanisms are unclear. Elevated expression of LAMP2A was found in 8 kinds of tumors (n=747), suggesting that LAMP2A may have an important role in cancer progression. Unsurprisingly, LAMP2A knockdown in gastric cancer (GC) cells hindered proliferation, accompanied with altered expression of cell cycle-related proteins and accumulation of RND3/RhoE. Interactomic and KEGG analysis revealed that RND3 was a putative CMA substrate. Further study demonstrated that RND3 silencing could partly rescue the proliferation arrest induced by LAMP2A knockdown; RND3 was increased upon lysosome inhibition via both chemicals and LAMP2A-shRNA; Furthermore, RND3 could interact with CMA components HSPA8 and LAMP2A, and be engulfed by isolated lysosomes. Thus, constant degradation of RND3 by CMA is required to sustain rapid proliferation of GC cells. At last, the clinical significance of LAMP2A was explored in 593 gastric noncancerous lesions and 173 GC tissues, the results revealed that LAMP2A is a promising biomarker for GC early warning and prognosis of female GC patients.  相似文献   

16.
Vinculin is a highly conserved protein involved in cell proliferation, migration, and adhesion. However, the effects of vinculin on gastric cancer (GC) remain unclear. Therefore, we aimed to explore the functional role of vinculin in GC, as well as its underlying mechanism. Expression of vinculin in patients with GC was analyzed by real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry. Overall survival was evaluated by the Kaplan-Meier method with the log-rank test. The relationship between vinculin and clinicopathological characteristics of patients with GC was further identified. In addition, we assessed the expression of vinculin in GC cell lines. Besides, vinculin was suppressed or overexpressed by transfection with small interfering (si-vinculin) or pcDNA-vinculin and then cell viability, cell apoptosis, and/or migration was respectively examined by the 3-(4, 5-dimethylthiazole-2-yl)-2, 5-biphenyl tetrazolium bromide assay, flow cytometer, and scratch assay, respectively. Moreover, the cell cycle- and apoptosis-related proteins were detected by Western blot analysis. The expression of vinculin was significantly increased in the GC tissues and cells compared with the nontumor tissues or cells. Vinculin protein positive staining was mainly located in the cell membrane and cytoplasm. Moreover, vinculin was significantly associated with Tumor Node Metastasis (TNM) and poor differentiation. Patients with high vinculin levels had significantly worse overall survival than those with low levels. Suppression of vinculin significantly decreased cell viability and migration and promoted cell apoptosis. However, overexpression of vinculin statistically increased cell viability but had no effects on cell apoptosis. Vinculin promotes GC proliferation and migration and predicts poor prognosis in patients with GC.  相似文献   

17.
18.
Among cancers, gastric cancer (GC) ranks third globally in morbidity and mortality, particularly in East Asia. Natriuretic peptide receptor A (NPRA), a receptor for guanylate cyclase, plays important roles in regulating water and sodium balance. Recent studies have suggested that NPRA is involved in tumorigenesis, but its role in GC development remains unclear. Herein, we showed that the expression level of NPRA was positively correlated with gastric tumor size and clinical stage. Patients with high NPRA expression had a lower five-year survival rate than those with low expression, and NPRA was identified as an independent predictor of GC prognosis. NPRA knockdown suppressed GC cell proliferation, migration and invasion. NPRA overexpression enhanced cell malignant behavior. Immunohistochemistry of collected tumor samples showed that tumors with high NPRA expression had higher peroxisome proliferator-activated receptor α (PPARα) levels. In vivo and in vitro studies showed that NPRA promotes fatty acid oxidation and tumor cell metastasis. Co-IP showed that NPRA binds to PPARα and prevents PPARα degradation. PPARα upregulation under NPRA protection activates arnitine palmitoyl transferase 1B (CPT1B) to promote fatty acid oxidation. In this study, new mechanisms by which NPRA promotes the development of GC and new regulatory mechanisms of PPARα were identified.  相似文献   

19.
Gastric cancer (GC) is one of the most common malignancies worldwide. Emerging evidence has shown that aberrant expression of microRNAs (miRNAs) plays important roles in cancer progression. However, little is known about the potential role of miR-217 in GC. In this study, we investigated the role of miR-217 on GC cell proliferation and invasion. The expression of miR-217 was down-regulated in GC cells and human GC tissues. Enforced expression of miR-217 inhibited GC cells proliferation and invasion. Moreover, Glypican-5 (GPC5), a new ocncogene, was identified as the potential target of miR-217. In addition, overexpression of miR-217 impaired GPC5-induced promotion of proliferation and invasion in GC cells. In conclusion, these findings revealed that miR-217 functioned as a tumor suppressor and inhibited the proliferation and invasion of GC cells by targeting GPC5, which might consequently serve as a therapeutic target for GC patients.  相似文献   

20.
We recently demonstrated that SERPINA3K, a serine proteinase inhibitor, has antioxidant activity in the cornea. Here we investigated the antioxidant effects of SERPINA3K on the pterygial, which is partially caused by oxidative stress in pathogenesis. The head part of primary pterygial tissue was dissected and then cultured in keratinocyte serum-free defined medium (KSFM). The cultured pterygial epithelial cells (PECs) were treated with SERPINA3K. The cell proliferation and migration of PECs were measured and analyzed. Western blot and quantitative real-time polymerase chain reaction (PCR) assay were performed. It showed that SERPINA3K significantly suppressed the cell proliferation of PECs in a concentration-dependent manner, compared with cultured human conjunctival epithelial cells. SERPINA3K also inhibited the cell migration of PECs. Towards its underlying mechanism, SERPINA3K had antioxidant activities on the PECs by significantly inhibiting NADPH oxidase 4 (NOX4), which is an important enzyme of ROS generation, and by elevating the levels of key antioxidant factors of ROS: such as NAD(P)H dehydrogenase (quinone 1) (NQO1), NF-E2–related factor-2 (NRF2) and superoxide dismutases (SOD2). Meanwhile, SERPINA3K down-regulated the key effectors of Wnt signaling pathway: β-catenin, nonphospho-β-catenin, and low-density lipoprotein receptor-related protein 6 (LRP6). We provided novel evidence that SERPINA3K had inhibitory effects on pterygium and SERPINA3K played antioxidant role via regulating the ROS system and antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号