首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen M  Gan G  Wu Y  Wang L  Wu Y  Ding J 《PloS one》2008,3(5):e2114
The auxiliary beta subunits of large-conductance Ca(2+)-activated K(+) (BK) channels greatly contribute to the diversity of BK (mSlo1 alpha) channels, which is fundamental to the adequate function in many tissues. Here we describe a functional element of the extracellular segment of hbeta2 auxiliary subunits that acts as the positively charged rings to modify the BK channel conductance. Four consecutive lysines of the hbeta2 extracellular loop, which reside sufficiently close to the extracellular entryway of the pore, constitute three positively charged rings. These rings can decrease the extracellular K(+) concentration and prevent the Charybdotoxin (ChTX) from approaching the extracellular entrance of channels through electrostatic mechanism, leading to the reduction of K(+) inflow or the outward rectification of BK channels. Our results demonstrate that the lysine rings formed by the hbeta2 auxiliary subunits influences the inward current of BK channels, providing a mechanism by which current can be rapidly diminished during cellular repolarization. Furthermore, this study will be helpful to understand the functional diversity of BK channels contributed by different auxiliary beta subunits.  相似文献   

2.
Large conductance, voltage- and Ca2+-activated K+ (BK) channels encoded by the mslo alpha and beta2 subunits exist abundantly in rat chromaffin cells, pancreatic beta cells, and DRG neurons. The extracellular loop of hbeta2 acting as the channel regulator influences the rectification and toxin sensitivity of BK channels, and the inactivation domain at its N terminus induces rapid inactivation. However, the regulatory mechanism, especially the trafficking mechanism of hbeta2, is still unknown. With the help of immunofluorescence and patch clamp techniques, we determine that the hbeta2 subunit alone resides in the endoplasmic reticulum, suggesting that trafficking mechanism of hbeta2 differs from that of hbeta1 opposite to what we predicted previously. We further demonstrate that a four-turn alpha helical segment at the N terminus of hbeta2 prevents the surface expression of hbeta2, that is, the helical segment itself is a retention signal. Using the c-Myc epitope-tagged extracellular loop of hbeta2, we reveal that the most accessible site by antibody is located at the middle of the extracellular loop, which might provide clues to understand how the auxiliary beta subunits regulates the toxin sensitivity and the rectification of BK-type channels.  相似文献   

3.
Auxiliary beta-subunits associated with pore-forming Slo1 alpha-subunits play an essential role in regulating functional properties of large-conductance, voltage- and Ca(2+)-activated K(+) channels commonly termed BK channels. Even though both noninactivating and inactivating BK channels are thought to be regulated by beta-subunits (beta1, beta2, beta3, or beta4), the molecular determinants underlying inactivating BK channels in native cells have not been extensively demonstrated. In this study, rbeta2 (but not rbeta3-subunit) was identified as a molecular component in rat lumbar L4-6 dorsal root ganglia (DRG) by RT-PCR responsible for inactivating large-conductance Ca(2+)-dependent K(+) currents (BK(i) currents) in small sensory neurons. The properties of native BK(i) currents obtained from both whole-cell and inside-out patches are very similar to inactivating BK channels produced by co-expressing mSlo1 alpha- and hbeta2-subunits in Xenopus oocytes. Intracellular application of 0.5 mg/ml trypsin removes inactivation of BK(i) channels, and the specific blockers of BK channels, charybdotoxin (ChTX) and iberiotoxin (IbTX), inhibit these BK(i) currents. Single BK(i) channel currents derived from inside-out patches revealed that one BK(i) channel contained three rbeta2-subunits (on average), with a single-channel conductance about 217 pS under 160 K(+) symmetrical recording conditions. Blockade of BK(i) channels by 100 nM IbTX augmented firing frequency, broadened action potential waveform and reduced after-hyperpolarization. We propose that the BK(i) channels in small diameter DRG sensory neurons might play an important role in regulating nociceptive input to the central nervous system (CNS).  相似文献   

4.
The auxiliary beta4 subunit of the human slowpoke calciumdependent potassium (slo) channel is expressed predominantly in the brain. Co-expression of beta4 subunit with the slo channel alpha subunit in HEK293 and Chinese hamster ovary cells slows channel activation and deactivation and also shifts the voltage dependence of the channel to more depolarized potentials. We show here that the functional interaction between the hbeta4 subunit and the slo channel is influenced by the phosphorylation state of hbeta4. Treatment of cells with okadaic acid (OA) reduces the effect of hbeta4 on slo channel activation kinetics and voltage dependence but not on slo channel deactivation kinetics. The effect of OA can be blocked by mutating three putative serine/threonine phosphorylation sites in hbeta4 (Thr-11/Ser-17/Ser-210) to alanines, suggesting that OA potentiates phosphorylation of hbeta4 and thereby suppresses its functional coupling to the slo channel. Mutation of Ser-17 alone to a negatively charged residue (S17E) can mimic the effect of OA. Mutating all three phosphorylation sites in hbeta4 to negatively charged residues (T11D/S17E/S210E) not only suppresses the effect of hbeta4 on slo channel activation kinetics and voltage dependence, it also suppresses its effect on slo channel deactivation kinetics. Co-immunoprecipitation/Western blot experiments indicate that all of these hbeta4 mutants, as well as the wild-type hbeta4, bind to the slo channel. Taken together, these data suggest that phosphorylation of the beta4 subunit dynamically regulates the functional coupling between the beta4 subunit and the pore-forming alpha subunit of the slo channel. In addition, phosphorylation of different residues in hbeta4 differentially influences its effects on slo channel activation kinetics, deactivation kinetics, and voltage dependence.  相似文献   

5.
The KCNMB3 gene encodes one of a family of four auxiliary beta subunits found in the mammalian genome that associate with Slo1 alpha subunits and regulate BK channel function. In humans, the KCNMB3 gene contains four N-terminal alternative exons that produce four functionally distinct beta3 subunits, beta3a-d. Three variants, beta3a-c, exhibit kinetically distinct inactivation behaviors. Since investigation of the physiological roles of BK auxiliary subunits will depend on studies in rodents, here we have determined the identity and functional properties of mouse beta3 variants. Whereas beta1, beta2, and beta4 subunits exhibit 83.2%, 95.3%, and 93.8% identity between mouse and human, the mouse beta3 subunit, excluding N-terminal splice variants, shares only 62.8% amino acid identity with its human counterpart. Based on an examination of the mouse genome and screening of mouse cDNA libraries, here we have identified only two N-terminal candidates, beta3a and beta3b, of the four found in humans. Both human and mouse beta3a subunits produce a characteristic use-dependent inactivation. Surprisingly, whereas the hbeta3b exhibits rapid inactivation, the putative mbeta3b does not inactivate. Furthermore, unlike hbeta3, the mbeta3 subunit, irrespective of the N terminus, mediates a shift in gating to more negative potentials at a given Ca(2+) concentration. The shift in gating gradually is lost following patch excision, suggesting that the gating shift involves some regulatory process dependent on the cytosolic milieu. Examination of additional genomes to assess conservation among splice variants suggests that the putative mbeta3b N terminus may not be a true orthologue of the hbeta3b N terminus and that both beta3c and beta3d appear likely to be primate-specific N-terminal variants. These results have three key implications: first, functional properties of homologous beta3 subunits may differ among mammalian species; second, the specific physiological roles of homologous beta3 subunits may differ among mammalian species; and, third, some beta3 variants may be primate-specific ion channel subunits.  相似文献   

6.
Yao J  Chen X  Li H  Zhou Y  Yao L  Wu G  Chen X  Zhang N  Zhou Z  Xu T  Wu H  Ding J 《The Journal of biological chemistry》2005,280(15):14819-14828
A novel "long chain" toxin BmP09 has been purified and characterized from the venom of the Chinese scorpion Buthus martensi Karsch. The toxin BmP09 is composed of 66 amino acid residues, including eight cysteines, with a mass of 7721.0 Da. Compared with the B. martensi Karsch AS-1 as a Na(+) channel blocker (7704.8 Da), the BmP09 has an exclusive difference in sequence by an oxidative modification at the C terminus. The sulfoxide Met-66 at the C terminus brought the peptide a dramatic switch from a Na(+) channel blocker toaK(+) channel blocker. Upon probing the targets of the toxin BmP09 on the isolated mouse adrenal medulla chromaffin cells, where a variety of ion channels coexists, we found that the toxin BmP09 specifically blocked large conductance Ca(2+)- and voltage-dependent K(+) channels (BK) but not Na(+) channels at a range of 100 nm concentration. This was further confirmed by blocking directly the BK channels encoded with mSlo1 alpha-subunits in Xenopus oocytes. The half-maximum concentration EC(50) of BmP09 was 27 nm, and the Hill coefficient was 1.8. In outside-out patches, the 100 nm BmP09 reduced approximately 70% currents of BK channels without affecting the single-channel conductance. In comparison with the "short chain" scorpion peptide toxins such as Charybdotoxin, the toxin BmP09 behaves much better in specificity and reversibility, and thus it will be a more efficient tool for studying BK channels. A three-dimensional simulation between a BmP09 toxin and an mSlo channel shows that the Lys-41 in BmP09 lies at the center of the interface and plugs into the entrance of the channel pore. The stable binding between the toxin BmP09 and the BK channel is favored by aromatic pi -pi interactions around the center.  相似文献   

7.
The maxi-K channel from bovine aortic smooth muscle consists of a pore-forming alpha subunit and a regulatory beta1 subunit that modifies the biophysical and pharmacological properties of the alpha subunit. In the present study, we examine ChTX-S10A blocking kinetics of single maxi-K channels in planar lipid bilayers from smooth muscle or from tsA-201 cells transiently transfected with either alpha or alpha+beta 1 subunits. Under low external ionic strength conditions, maxi-K channels from smooth muscle showed ChTX-S10A block times, 48 +/- 12 s, that were similar to those expressing alpha+beta 1 subunits, 51 +/- 16 s. In contrast, with the alpha subunit alone, ChTX-S10A block times were much shorter, 5 +/- 0.6 s, and were qualitatively similar to previously reported values for the skeletal muscle maxi-K channel. Increasing the external ionic strength caused a decrease in ChTX-S10A block times for maxi-K channel complexes of alpha+beta 1 subunits but not of alpha subunits alone. These findings indicate that it may be possible to predict the association of beta 1 subunits with native maxi-K channels by monitoring the kinetics of ChTX blockade of single channels, and they suggest that maxi-K channels in skeletal muscle do not contain a beta 1 subunit like the one present in smooth muscle. To further test this hypothesis, we examined the binding and cross-linking properties of [(125)I]-IbTX-D19Y/Y36F to both bovine smooth muscle and rabbit skeletal muscle membranes. [(125)I]-IbTX-D19Y/Y36F binds to rabbit skeletal muscle membranes with the same affinity as it does to smooth muscle membranes. However, specific cross-linking of [(125)I]-IbTX-D19Y/Y36F was observed into the beta 1 subunit of smooth muscle but not in skeletal muscle. Taken together, these data suggest that studies of ChTX block of single maxi-K channels provide an approach for characterizing structural and functional features of the alpha/beta 1 interaction.  相似文献   

8.
Mutations that impair the expression and/or function of gamma-aminobutyric acid type A (GABAA) receptors can lead to epilepsy. The familial epilepsy gamma2(K289M) mutation affects a basic residue conserved in the TM2-3 linker of most GABAA subunits. We investigated the effect on expression and function of the Lys --> Met mutation in mouse alpha1(K278M), beta2(K274M), and gamma2(K289M) subunits. Compared with cells expressing wild-type and alpha1beta2gamma2(K289M) receptors, cells expressing alpha1(K278M)beta2gamma2 and alpha1beta2(K274M)gamma2 receptors exhibited reduced agonist-evoked current density and reduced GABA potency, with no change in single channel conductance. The low current density of alpha1beta2(K274M)gamma2 receptors coincided with reduced surface expression. By contrast the surface expression of alpha1(K278M)beta2gamma2 receptors was similar to wild-type and alpha1beta2gamma2(K289M) receptors suggesting that the alpha1(K278M) impairs function. In keeping with this interpretation GABA-activated channels mediated by alpha1(K278M)beta2gamma2 receptors had brief open times. To a lesser extent gamma2(K289M) also reduced mean open time, whereas beta2(K274M) had no effect. We used propofol as an alternative GABAA receptor agonist to test whether the functional deficits of mutant subunits were specific to GABA activation. Propofol was less potent as an activator of alpha1(K278M)beta2gamma2 receptors. By contrast, neither beta2(K274M) nor gamma2(K289M) affected the potency of propofol. The beta2(K274M) construct was unique in that it reduced the efficacy of propofol activation relative to GABA. These data suggest that the alpha1 subunit Lys-278 residue plays a pivotal role in channel gating that is not dependent on occupancy of the GABA binding site. Moreover, the conserved TM2-3 loop lysine has an asymmetric function in different GABAA subunits.  相似文献   

9.
Using site-directed mutagenesis, Tyr-307, Tyr-341, or Tyr-364, supposedly located at the adenine nucleotide binding site(s) of the beta subunits of F1-ATPase from the thermophilic bacterium PS3, was replaced with Phe or Cys. The alpha 3 beta 3 complexes reconstituted from the alpha subunits and individual mutant beta subunits hydrolyzed ATP. Thus, neither the hydroxyl groups nor the aromatic rings in these positions are required for ATPase activity of F1-ATPase.  相似文献   

10.
The catalytic site of Escherichia coli F1 was probed using a reactive ATP analogue, adenosine triphosphopyridoxal (AP3-PL). For complete loss of enzyme activity, about 1 mol of AP3-PL bound to 1 mol of F1 was estimated to be required in the presence or absence of Mg2+. About 70% of the label was bound to the alpha subunit and the rest to the beta subunit in the absence of Mg2+, and the alpha Lys-201 and beta Lys-155 residues, respectively, were the major target residues (Tagaya, M., Noumi, T., Nakano, K., Futai, M., and Fukui, T. (1988) FEBS Lett. 233, 347-351). Addition of Mg2+ decreased the AP3-PL concentration required for half-maximal inhibition, and predominant labeling of the beta subunit (beta Lys-155 and beta Lys-201) with the reagent. ATP and ADP were protective ligands in the presence and absence of Mg2+. The alpha subunit mutation (alpha Lys-201----Gln or alpha Lys-201 deletion) were active in oxidative phosphorylation. However, purified mutant F1s showed impaired low multi-site activity, although their uni-site catalyses were essentially normal. Thus alpha Lys-201 is not a catalytic residue, but may be important for catalytic cooperativity. Mutant F1s were inhibited less by AP3-PL in the absence of Mg2+, and consistent with this, modifications of their alpha subunits by AP3-PL were reduced. AP3-PL was more inhibitory to the mutant enzymes in the presence of Mg2+, and bound to the beta Lys-155 and beta Lys-201 residues of mutant F1 (alpha Lys-201----Gln). These results strongly suggest that alpha Lys-201, beta Lys-155, and beta Lys-201 are located close together near the gamma-phosphate group of ATP bound to the catalytic site, and that the two beta residues and the gamma-phosphate group become closer to each other in the presence of Mg2+.  相似文献   

11.
beta(2)-Microglobulin (beta(2)m) is non-covalently linked to the major histocompatibility complex (MHC) class I heavy chain and interacts with CD8 and Ly49 receptors. Murine MHC class I heavy chains can bind human beta(2)m (hbeta(2)m) and peptide, and such hybrid molecules are often used in structural and functional studies. The replacement of mouse beta(2)m (mbeta(2)m) with hbeta(2)m has several functional consequences for MHC class I complex stability and specificity, but the structural basis for this is presently unknown. To investigate the impact of species-specific beta(2)m subunits on MHC class I conformation, we provide a crystallographic comparison of H-2D(b) in complex with LCMV-derived gp33 peptide and either hbeta(2)m or mbeta(2)m. The conformation of the gp33 peptide is not affected by the beta(2)m species. Comparison of the interface between beta(2)m and the alpha(1)alpha(2) domains of the heavy chain in these two crystal structures reveals a marked increase in both polarity and number of hydrogen bonds between hbeta(2)m and the alpha(1)alpha(2) domains of H-2D(b). We propose that the positioning of two hydrogen bond rich regions at the hbeta(2)m/alpha(1)alpha(2) interface plays a central role in the increased overall stability and peptide exchange capacity in the H-2D(b)/hbeta(2)m complex. These two regions act as bridges, holding and stabilizing the underside of the alpha(1) and alpha(2) helices, enabling a prolonged peptide-receptive conformation of the peptide binding cleft. Furthermore, analysis of H-2D(b) in complex with either mbeta(2)m or hbeta(2)m provides a structural explanation for the differential binding of H-2D(b)/hbeta(2)m to both Ly49A and Ly49C. Our comparative structural study emphasizes the importance of beta(2)m residues at positions 3, 6 and 29 for binding to Ly49A and suggests that sterical hindrance by residue K6 on hbeta(2)m impairs the recognition of Ly49C by H-2D(b)/gp33/hbeta(2)m. Finally, comparison of the two H-2D(b) crystal structures implies that the beta(2)m species may affect the strength of TCR recognition by affecting CD8 binding.  相似文献   

12.
The Shaker type voltage-gated potassium (K+) channel consists of four pore-forming Kv alpha subunits. The channel expression and kinetic properties can be modulated by auxiliary hydrophilic Kv beta subunits via formation of heteromultimeric Kv alpha-Kv beta complexes. Because each (Kv alpha)4 could recruit more than one Kv beta subunit and different Kv beta subunits could potentially interact, the stoichiometry of alpha-beta and beta-beta complexes is therefore critical for understanding the functional regulation of Shaker type potassium channels. We expressed and purified Kv beta 2 subunit in Sf9 insect cells. The purified Kv beta 2, examined by atomic force and electron microscopy techniques, is found predominately as a square-shaped tetrameric complex with side dimensions of 100 x 100 A2 and height of 51 A. Thus, Kv beta 2 is capable of forming a tetramer in the absence of pore-forming alpha subunits. The center of the Kv beta 2 complex was observed to be the most heavily stained region, suggesting that this region could be part of an extended tubular structure connecting the inner mouth of the ion permeation pathway to the cytoplasmic environment.  相似文献   

13.
The gamma-aminobutyric acid, type A (GABAA), receptor ion channel is lined by the second membrane-spanning (M2) segments from each of five homologous subunits that assemble to form the receptor. Gating presumably involves movement of the M2 segments. We assayed protein mobility near the M2 segment extracellular ends by measuring the ability of engineered cysteines to form disulfide bonds and high affinity Zn(2+)-binding sites. Disulfide bonds formed in alpha1beta1E270Cgamma2 but not in alpha1N275Cbeta1gamma2 or alpha1beta1gamma2K285C. Diazepam potentiation and Zn2+ inhibition demonstrated that expressed receptors contained a gamma subunit. Therefore, the disulfide bond in alpha1beta1E270Cgamma2 formed between non-adjacent subunits. In the homologous acetylcholine receptor 4-A resolution structure, the distance between alpha carbon atoms of 20' aligned positions in non-adjacent subunits is approximately 19 A. Because disulfide trapping involves covalent bond formation, it indicates the extent of movement but does not provide an indication of the energetics of protein deformation. Pairs of cysteines can form high affinity Zn(2+)-binding sites whose affinity depends on the energetics of forming a bidentate-binding site. The Zn2+ inhibition IC50 for alpha1beta1E270Cgamma2 was 34 nm. In contrast, it was greater than 100 microM in alpha1N275Cbeta1gamma2 and alpha1beta1gamma2K285C receptors. The high Zn2+ affinity in alpha1beta1E270Cgamma2 implies that this region in the beta subunit has a high protein mobility with a low energy barrier to translational motions that bring the positions into close proximity. The differential mobility of the extracellular ends of the beta and alpha M2 segments may have important implications for GABA-induced conformational changes during channel gating.  相似文献   

14.
Highly purified L-type Ca(2+) channel complexes containing all five subunits (alpha(1), alpha(2), beta, gamma, and delta) and complexes of alpha(1)-beta subunits were obtained from skeletal muscle triad membranes by three-step purification and by 1% Triton X-100 treatment, respectively. Their structures and the subunit arrangements were analyzed by electron microscopy. Projection images of negatively stained Ca(2+) channels and alpha(1)-beta complexes were aligned, classified and averaged. The alpha(1)-beta complex showed a hollow trapezoid shape of 12 nm height. In top view, four asymmetric domains surrounded a central depression predicted to form the channel pore. The complete Ca(2+) channel complex exhibited the cylindrical shape of 20 nm in height binding a spherical domain on one edge. Further image analysis of higher complexes of the Ca(2+) channel using a monoclonal antibody against the beta subunit showed that the alpha(1)-beta complex forms the non-decorated side of the cylinder, which can traverse the membrane from outside the cell to the cytoplasm. Based on these results, we propose that the Ca(2+) channel exhibits an asymmetric arrangement of auxiliary subunits.  相似文献   

15.
16.
The scorpion toxin BeKm-1 is unique among a variety of known short scorpion toxins affecting potassium channels in its selective action on ether-a-go-go-related gene (ERG)-type channels. BeKm-1 shares the common molecular scaffold with other short scorpion toxins. The toxin spatial structure resolved by NMR consists of a short alpha-helix and a triple-stranded antiparallel beta-sheet. By toxin mutagenesis study we identified the residues that are important for the binding of BeKm-1 to the human ERG K+ (HERG) channel. The most critical residues (Tyr-11, Lys-18, Arg-20, Lys-23) are located in the alpha-helix and following loop whereas the "traditional" functional site of other short scorpion toxins is formed by residues from the beta-sheet. Thus the unique location of the binding site of BeKm-1 provides its specificity toward the HERG channel.  相似文献   

17.
Proteins arising from the Slo family assemble into homotetramers to form functional large-conductance, Ca2+- and voltage-activated K+ channels, or BK channels. These channels are also found in association with accessory beta subunits, which modulate several aspects of channel gating and expression. Coexpression with either of two such subunits, beta2 or beta3b, confers time-dependent inactivation onto BK currents. mSlo1+beta3b channels display inactivation that is very rapid but incomplete. Previous studies involving macroscopic recordings from these channels have argued for the existence of a second, short-lived conducting state in rapid equilibrium with the nonconducting, inactivated conformation. This state has been termed "pre-inactivated," or O*. beta2-mediated inactivation, in contrast, occurs more slowly but is virtually complete at steady state. Here we demonstrate, using both macroscopic and single channel current recordings, that a preinactivated state is also a property of mSlo1+beta2 channels. Detection of this state is enhanced by a mutation (W4E) within the initial beta2 NH2-terminal segment critical for inactivation. This mutation increases the rate of recovery to the preinactivated open state, yielding macroscopic inactivation properties qualitatively more similar to those of beta3b. Furthermore, short-lived openings corresponding to entry into the preinactivated state can be observed directly with single-channel recording. By examining the initial openings after depolarization of a channel containing beta2-W4E, we show that channels can arrive directly at the preinactivated state without passing through the usual long-lived open conformation. This final result suggests that channel opening and inactivation are at least partly separable in this channel. Mechanistically, the preinactivated and inactivated conformations may correspond to binding of the beta subunit NH2 terminus in the vicinity of the cytoplasmic pore mouth, followed by definitive movement of the NH2 terminus into a position of occlusion within the ion-conducting pathway.  相似文献   

18.
The gamma-aminobutyric acid type A (GABA(A)) receptor assembles from individual subunits to form ligand-gated ion channels. Human (h) beta3 subunits assemble to form homomeric surface receptors in somatic cells, but hbeta1 subunits do not. We have identified three distinct sets of amino acid residues in the N-terminal extracellular domain of the hbeta1 subunit, which when mutated to the homologous residue in hbeta3 allow expression as a functional homomeric receptor. The three sets likely result in three modes of assembly. Mode 1 expression results from a single amino acid change at residue hbeta1 Asp-37. Mode 2 expression results from mutations of residues between positions 44 and 73 together with residues between positions 169 and 173. Finally, mode 3 results from the mutations A45V and K196R. Examination of homology-based structural models indicates that many of the residues are unlikely to be involved in physical inter-subunit interactions, suggesting that a major alteration is stabilization of an assembly competent form of the subunit. These mutations do not, however, have a major effect on the surface expression of heteromeric receptors which include the alpha1 subunit.  相似文献   

19.
Schistosomes are parasitic flatworms that cause schistosomiasis, a major tropical disease. The current drug of choice against schistosomiasis is praziquantel (PZQ), which has minimal side effects and is potent against all schistosome species. The mode of action of PZQ is unknown, though the drug clearly affects Ca(2+) homeostasis in worms, and there is indirect evidence for interaction of PZQ with schistosome voltage-gated Ca(2+) channels. We have cloned and expressed two Ca(2+) channel beta subunits, one from Schistosoma mansoni and one from Schistosoma japonicum. These two subunits (SmCa(v)beta A and SjCa(v)beta) have structural motifs that differ from those found in other known beta subunits. Surprisingly, coexpression of either SmCa(v)beta A or SjCa(v)beta with a cnidarian (CyCa(v)1) or mammalian (Ca(v)2.3) Ca(2+) channel alpha(1) subunit results in a striking reduction in current amplitude. In the case of Ca(v)2.3, this current reduction can be partially reversed by addition of 100 nm PZQ, which results in a significant increase in current amplitude. Thus, these unusual schistosome beta subunits can confer PZQ sensitivity to an otherwise PZQ-insensitive mammalian Ca(2+) channel, indicating that a possible target for PZQ action is the interaction between beta subunits and pore-forming alpha(1) subunits in schistosomes.  相似文献   

20.
Beta gamma dimers of G proteins inhibit atrial muscarinic K+ channels   总被引:4,自引:0,他引:4  
It has been proposed that beta gamma dimers of signal-transducing G proteins mediate muscarinic activation of atrial K+ channels. We examined this hypothesis by testing the effects of beta gamma dimers from four sources (human erythrocytes, human placenta, bovine brain, and bovine retina) on single channel muscarinic K+ (K+[acetylcholine (ACh)]) currents in inside-out membrane patches of adult guinea pig atria. None of the four beta gamma dimer preparations stimulated K+[ACh] currents; on the contrary, each inhibited the currents whether the currents were activated with GTP alone (agonist-independent activity) or with GTP plus a muscarinic agonist (agonist-dependent activity). Detergents at concentrations used to suspend erythrocyte, brain, and placental beta gamma dimers had no effect by themselves, and detergents were not used with the retinal beta gamma dimers. We conclude that beta gamma dimers do not mediate stimulatory effects of the endogenous G protein that regulates the K+ channels. In fact beta gamma dimers appear to inhibit activation by the endogenous G alpha subunits. Further insight into the role of beta gamma dimers came from the observation that agonist-independent GTP-activated K+[ACh] currents were inhibited by beta gamma dimers at about one-tenth the concentration required to inhibit agonist-dependent activation. One possibility is that dimeric beta gamma may have a higher affinity for free alpha subunits than for alpha subunits associated with agonist-occupied receptors. Thus, in addition to the known requirement of beta gamma dimers for the interaction of alpha subunits with receptors, beta gamma dimers may also improve the signal-to-noise ratio for agonists by reducing agonist-independent background activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号