首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisomal beta-oxidation is an essential step in bile acid synthesis, since it is required for shortening of C27-bile acid intermediates to produce mature C24-bile acids. D-Bifunctional protein (DBP) is responsible for the second and third step of this beta-oxidation process. However, both patients and mice with a DBP deficiency still produce C24-bile acids, although C27-intermediates accumulate. An alternative pathway for bile acid biosynthesis involving the peroxisomal L-bifunctional protein (LBP) has been proposed. We investigated the role of LBP and DBP in bile acid synthesis by analyzing bile acids in bile, liver, and plasma from LBP, DBP, and LBP:DBP double knock-out mice. Bile acid biosynthesis, estimated by the ratio of C27/C24-bile acids, was more severely affected in double knock-out mice as compared with DBP-/- mice but was normal in LBP-/- mice. Unexpectedly, trihydroxycholestanoyl-CoA oxidase was inactive in double knock-out mice due to a peroxisomal import defect, preventing us from drawing any firm conclusion about the potential role of LBP in an alternative bile acid biosynthesis pathway. Interestingly, the immature C27-bile acids in DBP and double knock-out mice remained unconjugated in juvenile mice, whereas they occurred as taurine conjugates after weaning, probably contributing to the minimal weight gain of the mice during the lactation period. This correlated with a marked induction of bile acyl-CoA:amino acid N-acyltransferase expression and enzyme activity between postnatal days 10 and 21, whereas the bile acyl-CoA synthetases increased gradually with age. The nuclear receptors hepatocyte nuclear factor-4alpha, farnesoid X receptor, and peroxisome proliferator receptor alpha did not appear to be involved in the up-regulation of the transferase.  相似文献   

2.
According to current views, peroxisomal beta-oxidation is organized as two parallel pathways: the classical pathway that is responsible for the degradation of straight chain fatty acids and a more recently identified pathway that degrades branched chain fatty acids and bile acid intermediates. Multifunctional protein-2 (MFP-2), also called d-bifunctional protein, catalyzes the second (hydration) and third (dehydrogenation) reactions of the latter pathway. In order to further clarify the physiological role of this enzyme in the degradation of fatty carboxylates, MFP-2 knockout mice were generated. MFP-2 deficiency caused a severe growth retardation during the first weeks of life, resulting in the premature death of one-third of the MFP-2(-/-) mice. Furthermore, MFP-2-deficient mice accumulated VLCFA in brain and liver phospholipids, immature C(27) bile acids in bile, and, after supplementation with phytol, pristanic and phytanic acid in liver triacylglycerols. These changes correlated with a severe impairment of peroxisomal beta-oxidation of very long straight chain fatty acids (C(24)), 2-methyl-branched chain fatty acids, and the bile acid intermediate trihydroxycoprostanic acid in fibroblast cultures or liver homogenates derived from the MFP-2 knockout mice. In contrast, peroxisomal beta-oxidation of long straight chain fatty acids (C(16)) was enhanced in liver tissue from MFP-2(-/-) mice, due to the up-regulation of the enzymes of the classical peroxisomal beta-oxidation pathway. The present data indicate that MFP-2 is not only essential for the degradation of 2-methyl-branched fatty acids and the bile acid intermediates di- and trihydroxycoprostanic acid but also for the breakdown of very long chain fatty acids.  相似文献   

3.
Peroxisomal beta-oxidation plays an important role in the metabolism of a wide range of substrates, including various fatty acids and the steroid side chain in bile acid synthesis. Two distinct thiolases have been implicated to function in peroxisomal beta-oxidation: the long known 41-kDa beta-ketothiolase identified by Hashimoto and co-workers (Hijikata, M., Ishii, N., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987) J. Biol. Chem. 262, 8151-8158) and the recently discovered 60-kDa SCPx thiolase, that consists of an N-terminal domain with beta-ketothiolase activity and a C-terminal moiety of sterol carrier protein-2 (SCP2, a lipid carrier or transfer protein). Recently, gene targeting of the SCP2/SCPx gene has shown in mice that the SCPx beta-ketothiolase is involved in peroxisomal beta-oxidation of 2-methyl-branched chain fatty acids like pristanic acid. In our present work we have investigated bile acid synthesis in the SCP2/SCPx knockout mice. Specific inhibition of beta-oxidation at the thiolytic cleavage step in bile acid synthesis is supported by our finding of pronounced accumulation in bile and serum from the knockout mice of 3alpha,7alpha, 12alpha-trihydroxy-27-nor-5beta-cholestane-24-one (which is a known bile alcohol derivative of the cholic acid synthetic intermediate 3alpha,7alpha,12alpha-trihydroxy-24-keto-cholestano yl-coenzyme A). Moreover, these mice have elevated concentrations of bile acids with shortened side chains (i.e. 23-norcholic acid and 23-norchenodeoxycholic acid), which may be produced via alpha- rather than beta-oxidation. Our results demonstrate that the SCPx thiolase is critical for beta-oxidation of the steroid side chain in conversion of cholesterol into bile acids.  相似文献   

4.
We have already reported that peroxisomal beta-oxidation has an anabolic function, supplying acetyl-CoA for bile acid biosynthesis [H. Hayashi and A. Miwa, 1989, Arch. Biochem. Biophys. 274, 582-589]. The anabolic significance of peroxisomal beta-oxidation was further investigated in the present study by using clofibrate, a peroxisome proliferator, as an experimental tool. Clofibrate suppressed 3-hydroxymethylglutaryl-CoA reductase activity (the key enzyme of cholesterol synthesis) and enhanced fatty acyl-CoA oxidase activity (the rate-limiting enzyme of beta-oxidation). Rats were fed a chow containing 0.25% clofibrate for 2 weeks, and then a bile duct fistula was implanted. [1-14C]lignoceric acid, which is degraded exclusively by peroxisomal FAOS, was injected into the rats 24 h after the operation. By this time, the secondary bile acids and pooled cholesterol which would normally be secreted into the bile are considered to have been exhausted from the liver. Clofibrate significantly decreased the incorporations of radioactivity into biliary bile acid (40% of the control) and cholesterol (50%), but did not affect biliary lipid contents. [14C]Acetyl-CoA formed by peroxisomal beta-oxidation of [1-14C]lignoceric acid was preferentially utilized for syntheses of long-chain fatty acids and phospholipids rather than synthesis of cholesterol or triglyceride. The radioactivities incorporated into the former two lipids were increased 2-fold over the control by administration of clofibrate, while the incorporation into triglyceride was decreased to approximately half. In particular, the incorporation into phosphatidylethanolamine was increased as much as 3.5-fold over the control. The contents of these lipids in the liver were not affected by clofibrate. The results suggest that peroxisomal beta-oxidation plays an important role in the biosynthesis of functional lipids such as phospholipids (this work), in addition to bile acids and cholesterol (previous report) by supplying acetyl-CoA.  相似文献   

5.
1. Bombina orientalis excretes mainly C27 bile acids: trihydroxycoprostanic and varanic acids. More than 90% of the trihydroxycoprostanic acid (THCA) present in the bile, was conjugated with taurine; varanic acid was present in the unconjugated form. 2. Trihydroxycoprostanoyl-CoA (THC-CoA) synthetase activity, required for the formation of the taurine conjugate, was present in the liver of Bombina orientalis. 3. Peroxisomal beta-oxidation, which catalyzes the oxidation of fatty acids as well as the conversion of C27 bile acids into C24 bile acids in rat and human liver, could be detected in liver of Bombina orientalis when palmitoyl-CoA was used as substrate, but not when trihydroxycoprostanoyl-CoA (THC-CoA) was used.  相似文献   

6.
Bile acids are synthesized de novo in the liver from cholesterol and conjugated to glycine or taurine via a complex series of reactions involving multiple organelles. Bile acids secreted into the small intestine are efficiently reabsorbed and reutilized. Activation by thioesterification to CoA is required at two points in bile acid metabolism. First, 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid, the 27-carbon precursor of cholic acid, must be activated to its CoA derivative before side chain cleavage via peroxisomal beta-oxidation. Second, reutilization of cholate and other C24 bile acids requires reactivation prior to re-conjugation. We reported previously that homolog 2 of very long-chain acyl-CoA synthetase (VLCS) can activate cholate (Steinberg, S. J., Mihalik, S. J., Kim, D. G., Cuebas, D. A., and Watkins, P. A. (2000) J. Biol. Chem. 275, 15605-15608). We now show that this enzyme also activates chenodeoxycholate, the secondary bile acids deoxycholate and lithocholate, and 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid. In contrast, VLCS activated 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoate, but did not utilize any of the C24 bile acids as substrates. We hypothesize that the primary function of homolog 2 is in the reactivation and recycling of C24 bile acids, whereas VLCS participates in the de novo synthesis pathway. Results of in situ hybridization, topographic orientation, and inhibition studies are consistent with the proposed roles of these enzymes in bile acid metabolism.  相似文献   

7.
While the roles of glutamic acid(Glu), arginine vasopressin(AVP) and their respective receptors in anxiety have been thoroughly investigated, the effects of interactions among Glu, N-methyl-D-aspartic acid(NMDA) receptor, AVP and a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid(AMPA) receptor on anxiety are still unclear. In the present study, the agonist and antagonist of the NMDA receptor and AMPA receptor, as well as the antagonist of AVP V1 receptor(V1aR) were introduced into BALB/cJ mice by intracerebroventricular microinjection, and the anxiety-like behaviors of the mice were evaluated by open field and elevated plus-maze tests. Compared with C57BL/6 mice, BALB/cJ mice displayed higher levels of anxiety-like behavior. Significant anxiolytic effects were found in the NMDA receptor antagonist(MK-801) and the AMPA receptor or V1 aR antagonist(SSRI49415), as well as combinations of AVP/MK-801 and SSRI49415/DNQX. These results indicated that anxiety-like behaviors expressed in BALB/CJ mice may be due to a coordination disorder among glutamate, NMDA receptor, AMPA receptor, AVP and V1 aR, resulting in the up-regulation of the NMDA receptor and V1 aR and down-regulation of the AMPA receptor. However, because the AMPA receptor can execute its anxiolytic function by suppressing AVP and V1 aR, we cannot exclude the possibility of the NMDA receptor being activated by AVP acting on V1 aR.  相似文献   

8.
The inbred C57L strain but not the AKR strain of mice carry Lith genes that determine cholesterol gallstone susceptibility. When C57L mice are fed a lithogenic diet containing 15% fat, 1% cholesterol, and 0.5% cholic acid, gallbladder bile displays rapid cholesterol supersaturation, mucin gel accumulation, increases in hydrophobic bile salts, and rapid phase separation of solid and liquid crystals, all of which contribute to the high cholesterol gallstone prevalence rates (D. Q-H. Wang, B. Paigen, and M. C. Carey. J. Lipid Res. 1997. 38: 1395;-1411). We have now determined the hepatic secretion rates of biliary lipids in fasting male and female C57L and AKR mice and the intercross (C57L x AKR)F(1) before and at frequent intervals during feeding the lithogenic diet for 56 days. Bile flow and biliary lipid secretion rates were measured in the first hour of an acute bile fistula and circulating bile salt pool sizes were determined by the "washout" technique after cholecystectomy. Compared with AKR mice, we found that i) C57L and F(1) mice on chow displayed significantly higher secretion rates of all biliary lipids, and larger bile salt pool sizes, as well as higher bile salt-dependent and bile salt-independent flow rates; ii) the lithogenic diet further increased biliary cholesterol and lecithin outputs, but bile salt outputs remained constant. Biliary coupling of cholesterol to lecithin increased approximately 30%, setting the biophysical conditions necessary for cholesterol phase separation in the gallbladder; and iii) no gender differences in lipid secretion rates were noted but male mice exhibited significantly more hydrophobic bile salt pools than females.We conclude that in gallstone-susceptible mice, Lith genes determine increased outputs of all biliary lipids but promote cholesterol hypersecretion disproportionately to lecithin and bile salt outputs thereby inducing lithogenic bile formation.  相似文献   

9.
The conjugate pattern of biliary [14C]bile acids was investigated in isolated perfused rat livers, which were infused with either [24-14C]cholic acid or [24-14C]chenodeoxycholic acid (40 mumol/h) together with or without taurine or cysteine (80 mumol/h). [14C]Bile acids were chromatographed on a thin-layer plate and the distribution of radioactivity on the plate was measured by radioscanning. The biliary excretion of [14C]bile acids was greater in the infusion with [14C]cholic acid than in the infusion with [14C]chenodeoxycholic acid. Biliary unconjugated [14C]bile acids amounted to about 50% of the total after the infusion with [14C]cholic acid, while only about 10% with [14C]chenodeoxycholic acid. In the initial period of infusion, biliary conjugated [14C]bile acids consisted mostly of the taurine conjugate, which decreased with time and the glycine conjugate increased complementarily. When taurine was simultaneously infused, the decrease in the taurine conjugate was suppressed to some extent. Cysteine infused in place of taurine had a similar influence but was less effective than taurine. The taurine content of liver after the infusion with either of the [14C]bile acids decreased greatly compared with that before the infusion, even when taurine or cysteine was infused simultaneously. The glycine content also decreased after the infusion, but the decrease in glycine was smaller than that in taurine. The results suggest that the conjugate pattern of biliary bile acids in rats depends mainly on the amount of taurine which is supplied to hepatic cells either exogenously from plasma or endogenously within themselves.  相似文献   

10.
The effects of chronic treatment of taurine on hypercholesterolemia and atherosclerosis were examined in C57BL/6J mice fed a high-fat diet containing 15% fat and 1.25% cholesterol. Taurine was dissolved in drinking water at 1% (w/v) and was given to mice ad libitum during 6 months-feeding of a high-fat diet. Hypercholesterolemia occurred and lipid accumulation on the aortic valve was evident. Taurine treatment lowered serum LDL + VLDL cholesterol by 44% in mice fed a high-fat diet, while it elevated serum HDL cholesterol by 25%. As a result, the atherogenic index, the ratio of HDL to LDL + VLDL was markedly improved. Cholesterol content in the liver also decreased by 19% with taurine. Similar tendencies were seen in mice fed regular chow, but the changes were not significant. The area of aortic lipid accumulation, which served as an index of atherosclerosis, was reduced by 20% with taurine. In the liver, taurine doubled the activity of cholesterol 7alpha-hydroxylase. These observations, together with prior findings, suggest that the cholesterol-lowering action of taurine may relate to the increased conversion of cholesterol to bile acids via stimulation of cholesterol 7a-hydroxylase activity. Thus, chronic treatment of high-fat mice with taurine improves the abnormal profile of the serum lipoproteins, and thereby retards the progression of atherosclerosis.  相似文献   

11.
These enzymes play important roles in the biosynthesis of bile acids. They are cholesterol 7alpha-hydroxylase (CYP7A1), the rate limiting enzyme in the classic pathway, sterol 12alpha-hydroxylase (CYP8B1), the key enzyme for synthesis of cholic acid (CA), and sterol 27-hydroxylase (CYP27), the initial enzyme in the alternative pathway. In the present study, the susceptibility of these three enzymes to dietary cholesterol and cholate, and the cholesterol lowering effect of taurine were determined in male C57BL/6 mice and Wistar rats. Both mice and rats were divided into 6 groups: control group (N), high cholesterol diet group (C), high cholesterol and cholate diet group (CB), and their 1% taurine-supplemented groups (NT, CT, CBT, respectively). After animals were fed with the respective diets for one week, the mRNA levels of CYP7A1 increased in the C-group compared with those of the N-group, and decreased in the CB-group compared with those of the C-group in both mice and rats. But the extent of decrease is different between the two species. CYP8B1 was also markedly repressed by cholate in mice, but not in rats. These results are consistent with the changes in serum and liver cholesterol concentrations. Taurine significantly increased CYP7A1 mRNA levels in the CBT-group compared with the CB-group in both animal models, with a subsequent decrease in serum and liver cholesterol levels and increase in fecal bile acid excretion. Up-regulated CYP8B1 was also observed after taurine supplementation in the CBT-group in mice. No increase in CYP7A1 was produced by taurine in the CT-group compared with that of the C-group in mice, although the changes of serum and liver cholesterol and fecal bile acids indicated taurine showed an efficient cholesterol lowering effect. In addition, CYP27 was induced in both C- and CB-groups of rats but not of mice, and no changes were produced by taurine. The overall results suggest that there are differences between mice and rats in susceptibility of the three enzymes to dietary cholesterol and cholate, and taurine induced CYP7A1 to produce its cholesterol-lowering effect only in the presence of cholate in the cholesterol diet.  相似文献   

12.
The pituitary is important in the control of lipid metabolism and studies of hypophysectomized (Hx) rats have shown strong effects of growth hormone (GH) on bile acid synthesis, hepatic LDL receptor (LDLR) expression and on the sensitivity to dietary cholesterol. It is unclear if mice may be used in such studies. The aim of the current study was to evaluate if Hx mice may be used to further explore how GH modulates cholesterol and bile acid metabolism, and to define the importance of the LDLR in this regulation by studying LDLR-deficient mice (LDLRko). Experiments on three mouse strains showed that, following Hx, HDL were reduced and LDL increased. Cholesterol/fat feeding of Hx mice increased serum cholesterol levels 2- to 3-fold. Serum triglycerides were reduced 50% in Hx mice; a further 30% reduction was seen after dietary cholesterol/fat. A serum marker for CYP7A1-mediated bile acid synthesis (C4) increased 2-fold in intact mice on cholesterol/fat diet. In Hx mice C4 levels were reduced by 50% as compared to intact controls, but were unexpectedly increased to levels seen in normal mice upon cholesterol/fat feeding. Hx of LDLRko mice moderately increased LDL-cholesterol and reduced triglycerides and GH treatment attenuated these effects; serum C4 levels were increased by GH treatment in all groups. In conclusion, mice can be used to explore the role of the pituitary in lipid metabolism. CYP7A1 is generally reduced in Hx mice but has a normal stimulatory response following dietary cholesterol suggesting that faulty regulation of CYP7A1 is not important for the reduced resistance to dietary cholesterol in Hx mice. Further, the LDLR is only to a minor part involved in the pituitary regulation of serum cholesterol in mice.  相似文献   

13.
The extent of mitochondrial and peroxisomal contribution to beta-oxidation of 18-, 20- and 24-carbon n-3 and n-6 polyunsaturated fatty acids (PUFAs) in intact rat hepatocytes is not fully clear. In this study, we analyzed radiolabeled acid soluble oxidation products by HPLC to identify mitochondrial and peroxisomal oxidation of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs. Mitochondrial fatty acid oxidation produced high levels of ketone bodies, tricarboxylic acid cycle intermediates and CO(2), while peroxisomal beta-oxidation released acetate. Inhibition of mitochondrial fatty acid oxidation with 2-tetradecylglycidic acid (TDGA), high amounts of [14C]acetate from oxidation of 24:5n-3, 18- and 20-carbon PUFAs were observed. In the absence of TDGA, high amounts of [14C]-labeled mitochondrial oxidation products were formed from oxidation of 24:5n-3, 18- and 20-carbon PUFAs. With 18:1n-9, high amounts of mitochondrial oxidation products were formed in the absence of TDGA, and TDGA strongly suppressed the oxidation of this fatty acid. Data of this study indicated that a shift in the partitioning from mitochondrial to peroxisomal oxidation differed for each individual fatty acid and is a specific property of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs.[14C]22:6n-3 was detected with [3-14C]24:5n-3, but not with [1-14C]24:5n-3 as the substrate, while [14C]16:0 was detected with [1-14C]24:5n-3, but not with [3-14C]24:5n-3 as the substrate. Furthermore, the amounts of 14CO(2) were similar when cells were incubated with [3-14C]24:5n-3 versus [1-14C]24:5n-3. These findings indicated that the proportion of 24:5n-3 oxidized in mitochondria was high, and that 24:5n-3 and 24:6n-3 were mostly beta-oxidized only one cycle in peroxisomes.  相似文献   

14.
Paramecium requires oleate for growth. The phospholipids of the ciliate contain high concentrations of palmitate and 18- and 20-carbon unsaturated fatty acids. We previously showed that radiolabeled oleate is desaturated and elongated to provide these 18- and 20-carbon unsaturated acids. We now report on saturated fatty acid (SFA) metabolism in Paramecium. Radiolabeled palmitate and stearate were incorporated directly into cellular phospholipids with little or no desaturation and/or elongation. Radiolabeled acetate, malonate, pyruvate, citrate, or glucose added to cultures were not incorporated into cellular phospholipid fatty acids indicating that these exogenously supplied putative precursors were not utilized for fatty acid synthesis by Paramecium. Radiolabel from octanoate or hexanoate appeared in fatty acyl groups of phospholipids, possibly by partial beta-oxidation and reincorporation of the label. Under oleate-free conditions in which cultures do not grow, radiolabel from these shorter chain SFA were beta-oxidized and preferentially used for the formation of arachidonate, the major end-product of fatty acid synthesis in Paramecium. Cerulenin inhibited culture growth apparently by inhibiting de novo fatty acid synthesis. Cerulenin-treated cells did not incorporate radioactivity from [1-14C]octanoate into esterified palmitate. However, total saponifiable phospholipid fatty acids, including SFA, per cell increased under these conditions.  相似文献   

15.
Hepatic steatosis is often associated with insulin resistance and obesity and can lead to steatohepatitis and cirrhosis. In this study, we have demonstrated that hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), two enzymes critical for lipolysis in adipose tissues, also contribute to lipolysis in the liver and can mobilize hepatic triglycerides in vivo and in vitro. Adenoviral overexpression of HSL and/or ATGL reduced liver triglycerides by 40-60% in both ob/ob mice and mice with high fat diet-induced obesity. However, these enzymes did not affect fasting plasma triglyceride and free fatty acid levels or triglyceride and apolipoprotein B secretion rates. Plasma 3-beta-hydroxybutyrate levels were increased 3-5 days after infection in both HSL- and ATGL-overexpressing male mice, suggesting an increase in beta-oxidation. Expression of genes involved in fatty acid transport and synthesis, lipid storage, and mitochondrial bioenergetics was unchanged. Mechanistic studies in oleate-supplemented McA-RH7777 cells with adenoviral overexpression of HSL or ATGL showed that reduced cellular triglycerides could be attributed to increases in beta-oxidation as well as direct release of free fatty acids into the medium. In summary, hepatic overexpression of HSL or ATGL can promote fatty acid oxidation, stimulate direct release of free fatty acid, and ameliorate hepatic steatosis. This study suggests a direct functional role for both HSL and ATGL in hepatic lipid homeostasis and identifies these enzymes as potential therapeutic targets for ameliorating hepatic steatosis associated with insulin resistance and obesity.  相似文献   

16.
Rates of acylcarnitine oxidation by isolated heart mitochondria from various animal species were measured polarographically, and by using a spectrophotometric assay [see Osmundsen & Bremer (1977) Biochem. J. 164, 621-633]. Polarographic measurements do not give a correct guide to abilities to beta-oxidize very-long-chain acylcarnitines, in particular C22:1 fatty acylcarnitines. 2. No significant species differences were detected in the abilities to beta-oxidize various C22:1 fatty acylcarnitines. Significant species differences were, however, detected when rates of beta-oxidation were correlated with rates of respiration brought about by very-long-chain acylcarnitines. We concluded that some aspects of oxidative metabolism (possibly the oxidation of tricarboxylic acid-cycle intermediates) are inhibited by very-long-chain fatty acids in some species (e.g. the rat and the cat but not in others (e.g. the pig and the rabbit). 3. It is proposed that the pattern of variation of rates of oxidation of various acylcarnitines (as measured spectrophotometrically) of various chain lengths can be used as a guide to the chain-length specificities of the acyl-CoA dehydrogenases of beta-oxidation (EC 1.3.99.3).  相似文献   

17.
There is evidence that increased availability of taurine enhances the proportion of taurine-conjugated bile acids in bile. To explore the possibility that taurine treatment could also influence hepatic cholesterol and bile acid metabolism, we fed female hamsters for 1 week and measured both the biliary lipid content and the microsomal level of the rate-limiting enzymes of cholesterol and bile acid synthesis. In these animals the cholesterol 7 alpha-hydroxylase activity was significantly greater in respect to controls (P less than 0.05). The total HMG-CoA reductase activity, as well as that of the active form, was similarly increased. The stimulation of 7 alpha-hydroxycholesterol synthesis was associated with an expansion of the bile acid pool size in taurine-fed animals. Taurine feeding was observed to induce an increase in bile flow as well as in the rate of excretion of bile acids, whereas the secretion rate of cholesterol in bile was decreased. As a consequence, the saturation index was significantly lower in taurine-fed animals (P less than 0.05). The possible mechanisms through which taurine exhibits the modification of the enzyme activities and of the biliary lipid composition are discussed.  相似文献   

18.
19.
Bile acids facilitate postprandial absorption of nutrients. Bile acids also activate the farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5 and play a major role in regulating lipid, glucose, and energy metabolism. Transgenic expression of cholesterol 7α-hydroxylase (CYP7A1) prevented high fat diet-induced diabetes and obesity in mice. In this study, we investigated the nutrient effects on bile acid synthesis. Refeeding of a chow diet to fasted mice increased CYP7A1 expression, bile acid pool size, and serum bile acids in wild type and humanized CYP7A1-transgenic mice. Chromatin immunoprecipitation assays showed that glucose increased histone acetylation and decreased histone methylation on the CYP7A1 gene promoter. Refeeding also induced CYP7A1 in fxr-deficient mice, indicating that FXR signaling did not play a role in postprandial regulation of bile acid synthesis. In streptozocin-induced type I diabetic mice and genetically obese type II diabetic ob/ob mice, hyperglycemia increased histone acetylation status on the CYP7A1 gene promoter, leading to elevated basal Cyp7a1 expression and an enlarged bile acid pool with altered bile acid composition. However, refeeding did not further increase CYP7A1 expression in diabetic mice. In summary, this study demonstrates that glucose and insulin are major postprandial factors that induce CYP7A1 gene expression and bile acid synthesis. Glucose induces CYP7A1 gene expression mainly by epigenetic mechanisms. In diabetic mice, CYP7A1 chromatin is hyperacetylated, and fasting to refeeding response is impaired and may exacerbate metabolic disorders in diabetes.  相似文献   

20.
Although the anti-inflammatory effect of interleukin-1 (IL-1) receptor antagonist (IL-1Ra) has been described, the contribution of this cytokine to cholesterol metabolism remains unclear. Our aim was to ascertain whether deficiency of IL-1Ra deteriorates cholesterol metabolism upon consumption of an atherogenic diet. IL-1Ra-deficient mice (IL-1Ra(-/-)) showed severe fatty liver and portal fibrosis containing many inflammatory cells following 20 weeks of an atherogenic diet when compared with wild type (WT) mice. Expectedly, the levels of total cholesterol in IL-1Ra(-/-) mice were significantly increased, and the start of lipid accumulation in liver was observed earlier when compared with WT mice. Real-time PCR analysis revealed that IL-1Ra(-/-) mice failed to induce mRNA expression of cholesterol 7alpha-hydroxylase, which is the rate-limiting enzyme in bile acid synthesis, with concurrent up-regulation of small heterodimer partner 1 mRNA expression. Indeed, IL-1Ra(-/-) mice showed markedly decreased bile acid excretion, which is elevated in WT mice to maintain cholesterol level under atherogenic diet feeding. Therefore, we conclude that the lack of IL-1Ra deteriorates cholesterol homeostasis under atherogenic diet-induced inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号