首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract: Hyperphosphorylation of the microtubule-associated protein τ is a characteristic of Alzheimer brain tissue. Recent in vitro data suggest that mitogen-activated protein kinase (MAPK), a proline-directed protein kinase, phosphorylates the sites on τ common to Alzheimer's disease. Using an okadaic acid-induced τ hyperphosphorylation model, we have tested the requirement for MAPK activity, using a specific inhibitor {PD098059 [2-(2'-amino-3'-methoxyphenyl)oxanaphthalen-4-one]} of the MAPK activator Mek1. Mobility shift, phosphoepitope analysis, and direct measurement of kinase activity indicated that the Mek1 inhibitor dose-dependently blocked basal and okadaic acid-induced MAPK activation. Despite a block of MAPK activation by this inhibitor, robust τ hyperphosphorylation was observed in response to okadaic acid. In addition, activation of MAPK by phorbol 12-myristate 13-acetate did not result in τ phosphorylation, indicating that in primary cultures of cortical neurons elevated MAPK activity is not sufficient to induce τ hyperphosphorylation.  相似文献   

3.
bcl-2 mRNA contains an AU-rich element (ARE) that functions in regulating bcl-2 stability. Our earlier studies indicated that taxol- or okadaic acid-induced bcl-2 mRNA destabilization in HL-60 cells is associated with decreased binding of trans-acting factors to the ARE. To identify factors that play a role in the regulation of bcl-2 mRNA stability, bcl-2 ARE-binding proteins were purified from HL-60 cells. Three polypeptides of 100, 70, and 32 kDa were isolated from a bcl-2 ARE affinity matrix. Matrix-assisted laser desorption ionization mass spectroscopy analysis identified these proteins as full-length nucleolin and proteolytic fragments of nucleolin. RNA gel shifts assays indicated that recombinant nucleolin (residues 284-707) binds specifically to bcl-2 ARE RNA. In addition, recombinant nucleolin decreases the rate of decay of mRNA in HL-60 cell extracts in an ARE-dependent manner. Taxol or okadaic acid treatment of HL-60 cells results in proteolysis of nucleolin in a similar time frame as drug-induced bcl-2 mRNA down-regulation. These findings suggest that nucleolin functions as a bcl-2-stabilizing factor and that taxol and okadaic acid treatment induces apoptosis in HL-60 cells through a process that involves down-regulation of nucleolin and destabilization of bcl-2 mRNA.  相似文献   

4.
To investigate the behavior of nuclear proteins in apoptotic cells, we examined the changes in nucleolin and proteins of the nucleolar organizing region during apoptosis in human osteoblastic cell lines, Saos-2 and MG63. Apoptosis was induced by treatment of these cells with okadaic acid. Proteins prepared from apoptotic cells were subjected to Western blot analysis and a modified Western blot method using silver nitrate. The anti-nucleolin antibody recognized the 110-kDa band and the staining intensity of this band decreased in the proteins prepared from the okadaic acid-treated apoptotic cells. The additional band of an 80-kDa was also detected in the proteins prepared from the apoptotic cells. Two major silver nitrate-stained bands, 110-kDa and 37-kDa, were detected among the proteins obtained from control cells. Like the Western blot analysis, the intensity of the 110-kDa silver nitrate-staining band decreased; an 80-kDa band appeared and its staining intensity increased in the lysate from the okadaic acid-treated cells. The signal intensity of the 37-kDa protein did not change in the sample from the apoptotic cells. In a cell-free apoptotic system, the 80-kDa protein was also detected and the amount of the 110-kDa protein decreased in the extract of Saos-2 cell nuclei incubated with apoptotic cytosol. The change in nucleolin in Saos-2 cells induced to undergo apoptosis was examined by an immunocytochemical procedure using the anti-nucleolin antibody and Hoechst 33342. Nucleolin was visible as dots in nucleoli in the control cells; however, it was not detected in the cells undergoing apoptosis. The dual-exposure view of Hoechst 33342 and anti-nucleolin staining cells confirmed that nucleolin had disappeared from the apoptotic nuclei of Saos-2.  相似文献   

5.
Chromosome condensation at mitosis correlates with the activation of p34cdc2 kinase, the hyperphosphorylation of histone H1 and the phosphorylation of histone H3. Chromosome condensation can also be induced by treating interphase cells with the protein phosphatase 1 and 2A inhibitors okadaic acid and fostriecin. Mouse mammary tumour FT210 cells grow normally at 32 degrees C, but at 39 degrees C they lose p34cdc2 kinase activity and arrest in G2 because of a temperature-sensitive lesion in the cdc2 gene. The treatment of these G2-arrested FT210 cells with fostriecin or okadaic acid resulted in full chromosome condensation in the absence of p34cdc2 kinase activity or histone H1 hyperphosphorylation. However, phosphorylation of histones H2A and H3 was strongly stimulated, partly through inhibition of histone H2A and H3 phosphatases, and cyclins A and B were degraded. The cells were unable to complete mitosis and divide. In the presence of the protein kinase inhibitor starosporine, the addition of fostriecin did not induce histone phosphorylation and chromosome condensation. The results show that chromosome condensation can take place without either the histone H1 hyperphosphorylation or the p34cdc2 kinase activity normally associated with mitosis, although it requires a staurosporine-sensitive protein kinase activity. The results further suggest that protein phosphatases 1 and 2A may be important in regulating chromosome condensation by restricting the level of histone phosphorylation during interphase, thereby preventing premature chromosome condensation.  相似文献   

6.
To investigate the role of protein hyperphosphorylation in plant cells, the effect of okadaic acid, a specific inhibitor of protein phosphatases PPI and PP2A, on the general morphology of Arabidopsis thaliana primary roots and the structural-functional characteristics of cortical microtubules in different cell types in all primary root growth zones was studied. It was found that okadaic acid affects microtubule organization in a different manner depending on the type of cells and functional zones of the primary root. Cortical microtubules in the epidermis and cortex cells of the elongation zone proved to be most sensitive to 0.1, 1, and 10 nM okadaic acid which completely depolymerized after inhibitor treatment. In trichoblasts, atrichoblasts of differentiation zone treatment with okadaic acid caused the microtubules stabilization. The treatment with okadaic acid significantly affected the morphology of root hairs, causing their swelling and branching as a result of abnormal microtubule orientation. The results of this study suggest that induction of protein hyperphosphorylation as a result of protein phosphatase inhibition plays a crucial key in microtubule organization in plant cells.  相似文献   

7.
Okadaic acid, a potent tumor promoter and inhibitor of phosphoserine/threonine protein phosphatases 1 and 2A, produces a large increase in epidermal growth factor (EGF) receptor phosphorylation in several cell types. The increases are limited to phosphoserine and phosphothreonine residues. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a distinct tumor promoter and protein kinase C activator, also induces serine/threonine phosphorylation of the EGF receptor and is known to modulate receptor functions. Comparison of okadaic acid and TPA influences on the EGF receptor show significant differences. Okadaic acid did not promote phosphorylation of Thr-654, a major site of TPA-induced phosphorylation. However, other sites of phosphorylation were similar for the two tumor promoters. In vitro experiments with purified protein phosphatase 2A demonstrate the insensitivity of Thr-654 phosphorylation, which regulates EGF receptor function, to dephosphorylation by this okadaic acid-sensitive protein phosphatase. In contrast to TPA, okadaic acid did not attenuate the tyrosine kinase activity or ligand binding capacity of the EGF receptor. However, okadaic acid did produce a decrease in EGF-stimulated inositol phosphate formation in a manner distinct from that of TPA.  相似文献   

8.
9.
10.
Okadaic acid and dinophysistoxin-1 isolated from a black sponge, Halichondria okadai are non-12-O-tetrade-canoylphorbol 13-acetate (non-TPA)-type tumor promoters of mouse skin. Okadaic acid at concentrations of 10-100 ng/ml stimulated prostaglandin E2 production in rat peritoneal macrophages. Dinophysistoxin-1 (35-methylokadaic acid) stimulated prostaglandin E2 production as strong as okadaic acid, but okadaic acid tetramethyl ether, an inactive compound as a tumor promoter, did not. Okadaic acid at 10 ng/ml (12.4 nM) stimulated prostaglandin E2 production as strongly as TPA at 10 ng/ml (16.2 nM) 20 h after incubation. Unlike TPA-type tumor promoters, okadaic acid required a lag phase before stimulation. The duration of this lag phase was dependent on the concentration of okadaic acid. Indomethacin inhibited okadaic acid-induced preostaglandin E2 production in a dose-dependent manner, and its inhibition was more strongly observed in okadaic acid-induced prostaglandin E2 production. Cycloheximide inhibited okadaic acid-induced release of radioactivity from [3H]arachidonic acid-labeled macrophages and prostaglandin E2 production dose dependently, suggesting that protein synthesis is a prerequisite for the stimulation of arachidonic acid metabolism. These results support our idea that tumor promoters, at very low concentrations, are able to stimulate arachidonic acid metabolism in rat peritoneal macrophages.  相似文献   

11.
Okadaic acid: a new probe for the study of cellular regulation   总被引:92,自引:0,他引:92  
The tumour promoter okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A. Here we review recent studies which demonstrate that this toxin is extremely useful for identifying biological processes that are controlled through the reversible phosphorylation of proteins.  相似文献   

12.
Murine (m) and human (h) granulocyte--macrophage colony-stimulating factors (GM-CSF) have been expressed in large quantities in Saccharomyces cerevisiae using a secretion vector containing the promoter and leader sequences of the mating pheromone alpha-factor. Functionally active mGM-CSF was identified by a proliferation assay with a factor-dependent cell line and by a granulocyte--macrophage colony formation assay using bone marrow cells. The activity of hGM-CSF was confirmed by stimulation of granulocyte--macrophage colony formation using human cord blood cells. Murine GM-CSF with various apparent mol. wts (13, 18, 24, 34 and 40 kd, as well as a smear of higher mol. wts) was detected in yeast culture medium by protein blotting using a rat monoclonal antibody specific for the mGM-CSF N-terminal region peptide. Protein blotting using a rat monoclonal antibody specific for the hGM-CSF N-terminal region demonstrated that a 15.6-kd and higher mol. wt heterogeneous species were secreted. Mutations introduced at each of the two potential N-linked glycosylation sites in mGM-CSF showed that the 13-kd protein is not glycosylated and the major 18-kd protein is mainly glycosylated at the more C-terminal site, whereas the heterogeneous higher mol. wt species were not affected by the mutations. The N-terminal amino acid of the 13-kd protein was shown to be Ser which was four amino acids in the C-terminal direction from the fusion point.  相似文献   

13.
In experimental alcoholic liver disease, protein degradation by the ATP-ubiquitin-proteasome pathway is inhibited. Failure of the proteasome to eliminate cytoplasmic proteins leads to the accumulation of oxidized and otherwise modified proteins. One possible explanation for the inhibition of the proteasome is hyperphosphorylation of proteasome subunits. To examine this possibility, the 26S proteasomes from the liver of rats fed ethanol and a pair-fed control were studied by isolating the proteasomes in a purified fraction. The effect of ethanol on the phosphorylation of proteasomal subunits was compared with the hyperphosphorylation of the proteasomes caused by okadaic acid given to rats in vivo. Ethanol ingestion caused an inhibition of the chymotrypsin-like activity of the purified proteasome. The 2D electrophoresis and Western blot analysis of the purified 20S and 26S proteasomes from the ethanol-fed rats indicated that hyperphosphorylation of proteasomal subunits had occured. The proteasomal alpha type subunits C9/alpha3 and C8/alpha7 were hyperphosphorylated compared to the controls. Chymotrypsin-like activity was also inhibited by okadaic acid treatment similar to ethanol feeding. The 26S proteasome fraction examined by isoelectric focusing gel revealed many hyperphosphorylated bands in the proteasomes from the okadaic acid treated and the ethanol fed rat livers compared with the controls. In conclusion hyperphosphorylation of the proteasome subunits occurs in the ethanol treated proteasomal subunits which could be one mechanism of the inhibition of the 26S proteasome caused by ethanol feeding.  相似文献   

14.
Hyperphosphorylated tau, which is the major protein of the neurofibrillary tangles in Alzheimer's disease brain, is most probably the result of an imbalance of tau kinase and phosphatase activities in the affected neurons. By using metabolically competent rat brain slices as a model, we found that selective inhibition of protein phosphatase 2A by okadaic acid induced an Alzheimer-like hyperphosphorylation and accumulation of tau. The hyperphosphorylated tau had a reduced ability to bind to microtubules and to promote microtubule assembly in vitro. Immunocytochemical staining revealed hyperphosphorylated tau accumulation in pyramidal neurons in cornu ammonis and in neocortical neurons. The topography of these changes recalls the distribution of neurofibrillary tangles in Alzheimer's disease brain. Selective inhibition of protein phosphatase 2B with cyclosporin A did not have any significant effect on tau phosphorylation, accumulation, or function. These studies suggest that protein phosphatase 2A participates in regulation of tau phosphorylation, processing, and function in vivo. A down-regulation of protein phosphatase 2A activity can lead to Alzheimer-like abnormal hyperphosphorylation of tau.  相似文献   

15.
Characterization of a 48-kDa nucleic-acid-binding fragment of nucleolin   总被引:5,自引:0,他引:5  
Nucleolin (C23 or 100 kDa) is an abundant single-stranded-nucleic-acid-binding nucleolar protein proposed to be involved in the early stages of ribosome assembly. A stable 48-kDa fragment of the protein was produced either by proteolytic activity present in nucleolar extracts or by added trypsin. The hydrodynamic and DNA-binding properties of the 48-kDa fragment were compared with the parent molecule. Protein sequencing indicated that the fragment begins at residue 282; amino acid composition of the fragment including 10-12 methylated arginine residues suggested that the fragment contains the entire COOH-terminal two-thirds of the protein. The 48-kDa fragment was more globular than nucleolin, as indicated by a lower frictional coefficient (1.3 vs. 2.0 for nucleolin) and a similar sedimentation coefficient (4.1-4.3S) in spite of the reduction in molecular mass. Although the 48-kDa fragment retained single-stranded-DNA-binding activity, the binding capacity and the ability to reassociate DNA were about fivefold and sixfold lower, respectively, than nucleolin. Similarly, tenfold higher concentrations of the 48-kDa fragment were required to form nucleoprotein aggregates. These results suggest that nucleolin contains a globular COOH-terminal domain for nucleic-acid binding and a NH2-terminal region which is involved in protein-protein interactions and modulating nucleic-acid-binding activity.  相似文献   

16.
Protein phosphatases are signalling molecules that regulate a variety of fundamental cellular processes including cell growth, metabolism and apoptosis. The aim of this work was to correlate the cytotoxicity of pervanadate and okadaic acid on HL60 cells and their effect on the phosphatase obtained from these cells. The cytotoxicity of these protein phosphatase inhibitors was evaluated on HL60 cells using phosphatase activity, protein quantification and MTT reduction as indices. The major phosphatase presents in the cellular extract showed high activity (80%) and affinity (Km = 0.08 mM) to tyrosine phosphate in relation to p-nitrophenyl phosphate (pNPP)-(Km = 0.51 mM). Total phosphatase (pNPP) was inhibited in the presence of 10 mM vanadate (98%), 200 microM pervanadate (95%) and 100 microM p-chloromercuribenzoate (80%) but okadaic acid caused a slight increase in enzyme activity (25%). When the HL60 cells were treated with the phosphatase inhibitors (pervanadate and okadaic acid) for 24hours, only 20% residual activity was observed in presence of 200 microM pervanadate, whereas in the presence of okadaic acid this inhibitory effect was not observed. However, in respect to mitochondrial function, cell viability decreased about 80% in the presence of 100 nM okadaic acid. The total protein content was decreased 25% when the cells were treated with 100 nM okadaic acid in combination with 200 microM pervanadate. Our results suggest that both phosphatase inhibitors presented different mechanisms of action on HL60 cells. However, their effect on the cell redox status have to be considered.  相似文献   

17.
18.
19.
20.
Okadaic acid is a powerful inhibitor of serine/threonine protein phosphatases 1 and 2A. Although it is known as a potent tumour promoter, the intracellular mechanism by which okadaic acid mediates its mitogenic effect remains to be clarified. We investigated the effect of okadaic acid on the activation of mitogenesis in Rat1 fibroblasts overexpressing insulin receptors. As previously reported, insulin induced Shc phosphorylation, Shc-Grb2 association, MAP kinase activation, and BrdU incorporation. Okadaic acid also stimulated tyrosine phosphorylation of Shc and its subsequent association with Grb2 in a time- and dose-dependent manner without affecting tyrosine phosphorylation of insulin receptor beta-subunit and IRS. However, to a lesser extent, okadaic acid stimulated MAP kinase activity and BrdU incorporation. Interestingly, preincubation of okadaic acid potentiated insulin stimulation of tyrosine phosphorylation of Shc (213% of control), Shc-Grb2 association (150%), MAP kinase activity (152%), and BrdU incorporation (148%). These results further confirmed the important role of Shc, but not IRS, in cell cycle progression in Rat1 fibroblasts. Furthermore, serine/ threonine phosphorylation appears to be involved in the regulation of Shc tyrosine phosphorylation leading to mitogenesis by mechanisms independent of insulin signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号