首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the O-antigen polysaccharide (PS) from the enteroaggregative Escherichia coli strain 396/C-1 has been determined. Sugar and methylation analyses together with 1H and 13C NMR spectroscopy were the main methods used. Inter-residue correlations were determined by 1H,1H-NOESY, 1H,13C-heteronuclear multiple-bond correlation and dipole-dipole cross-correlated relaxation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [structure: see text]. Analysis of NMR data reveals that on average the PS consists of approximately 13 repeating units and indicates that the biological repeating unit contains an N-acetylglucosamine residue at its reducing end. This structure is different to that reported for the O-antigen polysaccharide from E. coli O126. Monospecific anti-E. coli O126 rabbit serum from The International Escherichia and Klebsiella Centre did not distinguish between the E. coli strain 396/C-1 and the E. coli O126 reference strain, neither in slide agglutination nor in an indirect enzyme immunoassay. Subsequent successful serotyping of the E. coli strain 396/C-1 showed it to be E. coli O126:K+:H27.  相似文献   

2.
The structure of the O-antigenic polysaccharide (PS) from the enteroaggregative Escherichia coli strain 522/C1 has been determined. Component analysis and (1)H and (13)C NMR spectroscopy techniques were used to elucidate the structure. Inter-residue correlations were determined by (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [ structure: see text]. Analysis of NMR data reveals that on average the PS consists of four repeating units and indicates that the biological repeating unit contains an N-acetylgalactosamine residue at its reducing end. Serotyping of the E. coli strain 522/C1 showed it to be E. coli O 178:H7. Determination of the structure of the O-antigen PS of the international type strain from E. coli O 178:H7 showed that the two polysaccharides have identical repeating units. In addition, this pentasaccharide repeating unit is identical to that of the capsular polysaccharide from E. coli O9:K 38, which also contains O-acetyl groups.  相似文献   

3.
The structure of the O-antigen polysaccharide (PS) from the enteroaggregative Escherichia coli strain 180/C3 has been determined. Sugar and methylation analysis together with (1)H and (13)C NMR spectroscopy were the main methods used. The PS is composed of tetrasaccharide repeating units with the following structure: -->2)beta-D-Quip3NAc-(1-->3)beta-D-RIBf-(1-->4)beta-D-Galp-(1-->3)alpha-D-GalpNAc-(1-->. Analysis of NMR data indicates that the presented sequence of sugar residues also represents the biological repeating unit of the O-chain. The structure is closely related to that of O-antigen polysaccharide from E. coli O5 and partially to that of E. coli O65. The difference between the O-antigen from the 180/C3 strain and that of E. coli O5 is the linkage to the D-Quip3NAc residue, which in the latter strain is 4-O-substituted. The E. coli O65 O-antigen contains as part of its linear pentasaccharide repeating unit a similar structural element, namely -->4)-beta-d-GalpA-(1-->3)-alpha-D-GlcpNAc-(1-->2)-beta-D-Quip3NAc-(1-->, thereby indicating that a common epitope could be present for the two polysaccharides. Monospecific anti-E. coli O5 rabbit serum did not distinguish between the two positional isomeric structures neither in slide agglutination nor in an indirect enzyme immunoassay. The anti-O65 serum did react with both the 180/C3 and O5 LPS showing a partial cross-reactivity.  相似文献   

4.
The O-antigen of the lipopolysaccharide (LPS) from the enteroaggregative Escherichia coli strain 87/D2 has been determined by component analysis together with NMR spectroscopy. The polysaccharide has pentasaccharide repeating units in which all the residues have the galacto-configuration. The repeating unit of the O-antigen, elucidated using the O-deacylated LPS, is branched with the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately 0.7 per repeating unit) distributed over two positions. Subsequent analysis showed that the galactose residue carries acetyl groups at either O-3 or O-4 in a ratio of approximately 2:1. The international reference strain from E. coli O128ab was investigated and the repeating unit of the O-antigens has the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately one per repeating unit) distributed over two positions. The integrals of the resonances for the O-acetyl groups indicated similarities between the O-antigen from E. coli O128ab and that of E. coli strain 87/D2, whereas the O-acetyl substitution pattern in the E. coli O128ac O-antigen differed slightly. Enzyme immunoassay using specific anti-E. coli O128ab and anti-E. coli O128ac rabbit sera confirmed the results.  相似文献   

5.
The O-antigen polysaccharide of the lipopolysaccharide from the enteroaggregative Escherichia coli strain 62D1 has been determined. Sugar and methylation analysis together with 1H and 13C NMR spectroscopy revealed the components of the repeating unit. Two-dimensional NOESY and heteronuclear multiple-bond correlation experiments were used to deduce the sequence. 1H and 13C NMR spectra indicate heterogeneity in the polysaccharide. Methylation analysis and 1H NMR spectra of native and Smith-degraded material show that the majority (65%) of the repeating units has the following structure: Minor resonances in the NMR spectra are consistent with the presence of repeating units which lack the alpha-d-Galp terminal residue (35%).  相似文献   

6.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O152 has been determined. Component analysis together with 1H, 13C and 31P NMR spectroscopy were used to elucidate the structure. Inter-residue correlations were determined by 1H,31P COSY, 1H,1H NOESY and 1H,13C heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [structure: see text]. The structure is similar to that of the O-antigen polysaccharide from E. coli O173. The cross-reactivity between E. coli O152 and E. coli O3 may be explained by structural similarities in the branching region of their O-antigen polysaccharides.  相似文献   

7.
The structure of the O-antigen polysaccharide from Escherichia coli O159 has been determined using primarily NMR spectroscopy of the 13C-enriched polysaccharide. The sequence of the sugar residues could be determined by heteronuclear multiple bond connectivity NMR experiments. The polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [sequence: see text] Matrix assisted laser desorption ionization mass spectrometry was performed on intact lipopolysaccharide and from the resulting molecular mass the O-antigen part was estimated to contain approximately 23 repeating units. Cross-reactivity of this O-antigen to that of Shigella dysenteriae type 4 was confirmed using enzyme-linked immunoabsorbant assay.  相似文献   

8.
The structure of the O-antigen polysaccharide from Escherichia coli O164 has been determined. Nuclear magnetic resonance spectroscopy together with component and methylation analyses of lipid free polysaccharide were the principal methods used. The sequence of the sugar residues could be determined by NOESY and heteronuclear multiple bond connectivity NMR experiments. It is concluded that the polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [structure: see text]. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was performed on intact lipopolysaccharide and from the resulting molecular mass, the O-antigen part was estimated to contain approximately 24 repeating units. The nature of the previously reported cross-reactivity of this O-antigen to those of Escherichia coli O124 and Shigella dysenteriae type 3 is discussed.  相似文献   

9.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O176 has been determined. Component analysis together with 1H and 13C NMR spectroscopy was employed to elucidate the structure. Inter-residue correlations were determined by 1H, 1H NOESY and 1H, 13C heteronuclear multiple-bond correlation experiments. The PS is composed of tetrasaccharide repeating units with the following structure: [Formula: see text] Cross-peaks of low intensity from alpha-linked mannopyranosyl residues were present in the 1H, 1H TOCSY NMR spectra and further analysis of these showed that they originate from the terminal part of the polysaccharide. Consequently, the biological repeating unit has a 3-substituted N-acetyl-d-galactosamine residue at its reducing end. The repeating unit of the E. coli O176 O-antigen is similar to those from E. coli O17 and O77, thereby explaining the reported cross-reactivities between the strains, and identical to that of Salmonella cerro (O:6, 14, 18).  相似文献   

10.
A strain of Citrobacter sedlakii showing serological cross-reaction with Escherichia coli O157 antisera was demonstrated to produce a lipopolysaccharide O-antigen having an identical structure with that of the E. coli O157 O-antigen. A strain of Citrobacter freunndii showing similar cross-reaction with E. coli O157 specific monoclonal antibody was shown to produce a lipopolysaccharide O-antigen composed of a trisaccharide repeating unit having the structure [ 2)-alpha-D Rhap-(1-3)-beta-D-Rhap-(1-4)-beta-D-Glcp-(1-]. This O-antigen differs from that of the E. coli O157 O-antigen and also lacks a component 2-substituted 4-amino-4,6-dideoxy-alpha-D-mannopyranosyl residue implicated as the common epitope in the lipopolysaccharide O-antigens of previously investigated bacterial species showing serological cross-reactivity with E. coli O157 antisera. The C freundii O-antigen presents an interesting example of structural mimicry within a bacterial polysaccharide antigen.  相似文献   

11.
The structure of the O-antigen polysaccharide of the lipopolysaccharide from the enteroinvasive Escherichia coli O136 has been elucidated. The composition of the repeating unit was established by sugar and methylation analysis together with 1H and 13C NMR spectroscopy. Two-dimensional nuclear Overhauser effect spectroscopy (NOESY) and heteronuclear multiple-bond correlation experiments were used to deduce the sequence. The absolute configuration for the nonulosonic acid (NonA) could be determined using spin-spin coupling constants, 13C chemical shifts and NOESY. The anomeric configuration of the NonA was determined via vicinal and geminal 13C,1H coupling constants. The structure of the repeating unit of the polysaccharide from E. coli O136 is as follows, in which beta-NonpA is 5,7-diacetamido-3,5,7, 9-tetradeoxy-Lglycero-beta-Lmanno-nonulosonic acid: -->4)-beta-NonpA-(2-->4)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->  相似文献   

12.
The structure of the O-antigen polysaccharide from Escherichia coli O172 has been determined. In combination with sugar analysis, NMR spectroscopy shows that the polysaccharide is composed of pentasaccharide repeating units. Sequential information was obtained by mass spectrometry and two-dimensional NMR techniques. An O-acetyl group was present as 0.7 equivalent per repeating unit. Treatment of the O-deacetylated polysaccharide with aqueous 48% hydrofluoric acid rendered cleavage of the phosphodiester in the backbone of the polymer and the pentasaccharide isolated after gel permeation chromatography was structurally characterized. Subsequent NMR experiments on polymeric materials revealed the structure of the repeating unit of the O-polysaccharide from E. coli O172 as:-->P-4)-alpha-D-Glcp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D- GlcpNAc-(1-->3)-alpha-L-FucpNAc-(1-->4)-alpha-D-Glcp6Ac-(1-->  相似文献   

13.
Escherichia coli produces polysaccharide capsules that, based on their mechanisms of synthesis and assembly, have been classified into four groups. The group 4 capsule (G4C) polysaccharide is frequently identical to that of the cognate lipopolysaccharide O side chain and has, therefore, also been termed the O-antigen capsule. The genes involved in the assembly of the group 1, 2, and 3 capsules have been described, but those required for G4C assembly remained obscure. We found that enteropathogenic E. coli (EPEC) produces G4C, and we identified an operon containing seven genes, ymcD, ymcC, ymcB, ymcA, yccZ, etp, and etk, which are required for formation of the capsule. The encoded proteins appear to constitute a polysaccharide secretion system. The G4C operon is absent from the genomes of enteroaggregative E. coli and uropathogenic E. coli. E. coli K-12 contains the G4C operon but does not express it, because of the presence of IS1 at its promoter region. In contrast, EPEC, enterohemorrhagic E. coli, and Shigella species possess an intact G4C operon.  相似文献   

14.
AIM: To characterize the locus for O-antigen biosynthesis from Escherichia coli O172 type strain and to develop a rapid, specific and sensitive PCR-based method for identification and detection of E. coli O172. METHODS AND RESULTS: DNA of O-antigen gene cluster of E. coli O172 was amplified by long-range PCR method using primers based on housekeeping genes galF and gnd Shot gun bank was constructed and high quality sequencing was performed. The putative genes for synthesis of UDP-FucNAc, O-unit flippase, O-antigen polymerase and glycosyltransferases were assigned by the homology search. The evolutionary relationship between O-antigen gene clusters of E. coli O172 and E. coli O26 is shown by sequence comparison. Genes specific to E. coli O172 strains were identified by PCR assays using primers based on genes for O-unit flippase, O-antigen polymerase and glycosyltransferases. The specificity of PCR assays was tested using all E. coli and Shigella O-antigen type strains, as well as 24 clinical E. coli isolates. The sensitivity of PCR assays was determined, and the detection limits were 1 pg microl(-1) chromosomal DNA, 0.2 CFU g(-1) pork and 0.2 CFU ml(-1) water. The total time required from beginning to end of the procedure was within 16 h. CONCLUSION: The O-antigen gene cluster of E. coli O172 was identified and PCR assays based on O-antigen specific genes showed high specificity and sensitivity. SIGNIFICANCE AND IMPACT OF THE STUDY: An O-antigen gene cluster was identified by sequencing. The specific genes were determined for E. coli O172. The sensitivity of O-antigen specific PCR assay was tested. Although Shiga toxin-producing O172 strains were not yet isolated from clinical specimens, they may emerge as pathogens.  相似文献   

15.
Structural analysis of lipopolysaccharide (LPS) isolated from semirough, serum-sensitive Escherichia coli strain Nissle 1917 (DSM 6601, serotype O6:K5:H1) revealed that this strain's LPS contains a bisphosphorylated hexaacyl lipid A and a tetradecasaccharide consisting of one E. coli O6 antigen repeating unit attached to the R1-type core. Configuration of the GlcNAc glycosidic linkage between O-antigen oligosaccharide and core (beta) differs from that interlinking the repeating units in the E. coli O6 antigen polysaccharide (alpha). The wa(*) and wb(*) gene clusters of strain Nissle 1917, required for LPS core and O6 repeating unit biosyntheses, were subcloned and sequenced. The DNA sequence of the wa(*) determinant (11.8 kb) shows 97% identity to other R1 core type-specific wa(*) gene clusters. The DNA sequence of the wb(*) gene cluster (11 kb) exhibits no homology to known DNA sequences except manC and manB. Comparison of the genetic structures of the wb(*)(O6) (wb(*) from serotype O6) determinants of strain Nissle 1917 and of smooth and serum-resistant uropathogenic E. coli O6 strain 536 demonstrated that the putative open reading frame encoding the O-antigen polymerase Wzy of strain Nissle 1917 was truncated due to a point mutation. Complementation with a functional wzy copy of E. coli strain 536 confirmed that the semirough phenotype of strain Nissle 1917 is due to the nonfunctional wzy gene. Expression of a functional wzy gene in E. coli strain Nissle 1917 increased its ability to withstand antibacterial defense mechanisms of blood serum. These results underline the importance of LPS for serum resistance or sensitivity of E. coli.  相似文献   

16.
Colanic acid (CA) or M-antigen is an exopolysaccharide produced by many enterobacteria, including the majority of Escherichia coli strains. Unlike other capsular polysaccharides, which have a close association with the bacterial surface, CA forms a loosely associated saccharide mesh that coats the bacteria, often within biofilms. Herein we show that a highly mucoid strain of E. coli K-12 ligates CA repeats to a significant proportion of lipopolysaccharide (LPS) core acceptor molecules, forming the novel LPS glycoform we call MLPS.MLPS biosynthesis is dependent upon (i) CA induction, (ii) LPS core biosynthesis, and (iii) the O-antigen ligase WaaL. Compositional analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy of a purified MLPS sample confirmed the presence of a CA repeat unit identical in carbohydrate sequence, but differing at multiple positions in anomeric configuration and linkage, from published structures of extracellular CA. The attachment point was identified as O-7 of the L-glycero-D-manno-heptose of the outer LPS core, the same position used for O-antigen ligation. When O-antigen biosynthesis was restored in the K-12 background and grown under conditions meeting the above specifications, only MLPS was observed, suggesting E. coli can reversibly change its proximal covalently linked cell surface polysaccharide coat from O-antigen to CA in response to certain environmental stimuli. The identification of MLPS has implications for potential underlying mechanisms coordinating the synthesis of various surface polysaccharides.  相似文献   

17.
采用鸟枪法破译大肠杆菌O23标准株的O-抗原基因簇序列,并用生物信息学的方法进行了基因注释和分析;采用基因缺失和互补的方法鉴定了O23的UDP-GlcNAc C4异构酶(Gne);用同源建模的方法构建了O23 Gne的高级结构并对其活性位点进行了分析;分析了不同血清型大肠杆菌O-抗原基因簇中gne基因的多样性;根据O23O-抗原基因簇中的特异基因筛选出了可用于大肠杆菌O23快速检测的特异DNA序列。  相似文献   

18.
Basu S  Ghosh S  Ganguly NK  Majumdar S 《Biochimie》2004,86(9-10):657-666
The pathogenesis of enteroaggregative Escherichia coli, a major contributor to paediatric diarrhoea, is still not clearly understood. A complex carbohydrate specific lectin was identified from the culture supernatant of an enteroaggregative E. coli strain. The lectin was purified to 660-fold by a combination of sequential saturated ammonium sulphate precipitation and gel filtration chromatography in the FPLC system. The homogeneity of the purified lectin was established by analytical isoelectrofocusing [pI 6.75]. Hemagglutination of rabbit erythrocytes by the purified lectin was best inhibited by fetuin. The N-terminal sequence of the 41.7 kDa subunit showed homology to the outermembrane porins and the 23.4 kDa subunit showed homology to a hypothetical protein of Yersinia pestis and secreted Hcp protein. This protein could induce extensive morphological changes in HEp-2 cells and significant amount of fluid accumulation in rabbit ileal loop. GM1 showed maximum binding to the lectin among all other gangliosides. This purified protein showed cross-reactivity to the binding subunit of cholera toxin in western immunoblot. The presence of this toxin in some of the clinical isolates of enteroaggregative E. coli was also observed. The structural and functional characteristics of the toxin revealed that it is a novel virulence determinant of aggregative E. coli.  相似文献   

19.
The O antigen of Escherichia coli O111 is identical in structure to that of Salmonella enterica serovar adelaide. Another O-antigen structure, similar to that of E. coli O111 and S. enterica serovar adelaide is found in both E. coli O55 and S. enterica serovar greenside. Both O-antigen structures contain colitose, a 3,6 dideoxyhexose found only rarely in the Enterobacteriaceae. The O-antigen structure is determined by genes generally located in the rfb gene cluster. We cloned the rfb gene cluster from an E. coli O111 strain (M92), and the clone expressed O antigen in both E. coli K-12 and a K-12 strain deleted for rfb. Lipopolysaccharide analysis showed that the O antigen produced by strains containing the cloned DNA is polymerized. The chain length of O antigen was affected by a region outside of rfb but linked to it and present on some of the plasmids containing rfb. The rfb region of M92 was analysed and compared, by DNA hybridization, with that of strains with related O antigens. The possible evolution of the rfb genes in these O antigen groups is discussed.  相似文献   

20.
A 658 bp DNA sequence corresponding to the murine lambda 1 chain of a monoclonal antibody, Se155-4, specific for the Salmonella serotype B O-antigen, was designed using Escherichia coli preferred codons and chemically synthesized by ligation of synthetic fragments into a linearized plasmid followed by transformation into E. coli. A synthetic signal peptide (ompA) was fused to express the L chain as a free polypeptide into the periplasm of E. coli cells. After isolation and purification, heterologous recombination of the E. coli L chain with mouse H chain gave an active antigen-binding protein. The activity was 15-20% when compared to protein created by an equivalent association of isolated natural mouse L and H chains as measured by a direct EIA assay. In inhibition experiments with the polysaccharide antigen, the two proteins showed identical titration curves and 50% inhibition points, indicating comparable KA values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号