首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Identification of an endogenous activator of calpain in rat skeletal muscle   总被引:3,自引:0,他引:3  
An additional component of the regulatory system of rat skeletal muscle calpain has been identified. It exerts a potent activating effect on calpain activity and is a heat stable small molecular weight protein. Of the two calpain isozymes present in muscle, the activator is specific for calpain II, being uneffective with calpain I. It promotes activation of the proteinase by reducing 50 fold, from 1 mM to of 20 microM, the requirement of Ca2+ for maximum catalytic activity of the proteinase. However in the presence of the activator calpain II expresses a consistent fraction of the maximum activity even at significantly lower concentrations of Ca2+ (below 5 microM Ca2+). The activator effect follows kinetics that are consistent with the presence of specific binding sites on the calpain molecules. The activator not only removes in a dose dependent fashion the inhibition of calpain by calpastatin, but also prevents inhibition of the proteinase upon the addition of calpastatin. Competition experiments revealed that the proteinase contains distinct sites for the activator and the inhibitor, and that both ligands can bind to calpain with the formation of an almost fully active ternary complex.  相似文献   

2.
Phosphodiesterase activator protein and troponin-C have been purified from rat testis and rabbit skeletal muscle, respectively. The two proteins appear to be structurally distinct since the activator protein migrates faster than troponin-C on sodium dodecyl sulfate-polyacrylamide gels. Each of the calcium-binding proteins will, however, substitute for the other in their respective biological systems. Testis activator protein forms a complex with rabbit muscle troponin subunits TnI and TnT soluble in low salt. This hybrid complex (AIT) can regulate rabbit skeletal muscle actomyosin ATPase activity. AIT regulation, although influenced by free Aa2+ levels, is distinct from that of native troponin. Likewise, muscle troponin-C can substitute for activator protein in the stimulation of cyclic nucleotide phosphodiesterase. Troponin-C will fully stimulate phosphodiesterase although its affinity is 600-fold lower than that of activator protein. Ca2+ regulation studies demonstrate that both proteins require micormolar levels of free Ca2+ to induce phosphodiesterase activation. Activator protein requires 1.2 x 10(6) M and troponin-C, 1.9 X 10(6) M free Ca2+ for half-maximal stimulation of phosphodiesterase. The biological cross-reactivity of these proteins supports the sequence homology recently reported by Watterson et al. (Watterson, D.M., Harrelson, W.G., Keller, P.M., Sharief, F., and Vanaman, T.C. (1976) J.Biol. Chem. 251, 4501-4513). In addition, this preliminary study suggests that this nonmuscle troponin-C-like protein potentially may function in other Ca2+-regulated cellular events in addition to its moculation of cyclic nucleotide levels.  相似文献   

3.
4.
Endurance training is associated with increases in mitochondrial density, of which cytochrome c protein is an index. Increases in the synthesis rates of cytochrome c protein in skeletal muscle during endurance training have been inferred (Biochem. Biophys. Res. Commun. 66: 173, 1975; J. Biol. Chem. 252: 416, 1977). One purpose of the present study was to test these indirect approximations with direct measurements of the synthesis rates of cytochrome c protein in skeletal muscles postexercise. No change in the fractional synthesis rate of cytochrome c was detected in the red quadriceps muscle of rats either 2-7 h after a 104-min run on a motor-driven treadmill or 17-22 h after the final bout of 4 days of running 100 min/day. If the 16% increase in cytochrome c protein concentration in the red quadriceps muscle on the 5th day of training is used to calculate the nanomoles of cytochrome c synthesized per gram of wet muscle weight, the normalized rate of cytochrome c protein synthesis is increased 29% on the 5th day of training. The observation of no significant alteration in cytochrome c mRNA in the red quadriceps muscle of rats during the 1st wk of training implies that the initial increase in the synthesis rate of cytochrome c protein normalized per unit of muscle mass during treadmill training is likely to occur at a translational or posttranslational step. These results suggest that the control of increased cytochrome c expression in skeletal muscle during exercise training involves a complex mechanism.  相似文献   

5.
6.
A model to study glycogen supercompensation (the significant increase in glycogen content above basal level) in primary rat skeletal muscle culture was established. Glycogen was completely depleted in differentiated myotubes by 2 h of electrical stimulation or exposure to hypoxia during incubation in medium devoid of glucose. Thereafter, cells were incubated in medium containing glucose, and glycogen supercompensation was clearly observed in treated myotubes after 72 h. Peak glycogen levels were obtained after 120 h, averaging 2.5 and 4 fold above control values in the stimulated- and hypoxia-treated cells, respectively. Glycogen synthase activity increased and phosphorylase activity decreased continuously during 120 h of recovery in the treated cells. Rates of 2-deoxyglucose uptake were significantly elevated in the treated cells at 96 and 120 h, averaging 1.4–2 fold above control values. Glycogenin content increased slightly in the treated cells after 48 h (1.2 fold vs. control) and then increased considerably, achieving peak values after 120 h (2 fold vs. control). The results demonstrate two phases of glycogen supercompensation: the first phase depends primarily on activation of glycogen synthase and inactivation of phosphorylase; the second phase includes increases in glucose uptake and glycogenin level.  相似文献   

7.
Phosphoenolpyruvate-dependent protein kinase activity has been demonstrated in the soluble fraction of rat skeletal muscle. The reaction was not due to the formation of ATP in the incubation mixture. Cyclic AMP, calcium, ATP and a number of phosphate acceptor proteins did not stimulate the reaction. One 32P-labelled protein (Mr 25000) was observed on SDS gels. The phosphorylated protein contained acid stable phosphoserine as a major phosphorylated amino acid. The phosphorylation reaction in crude extracts was not directly proportional to the amount of protein, but typical of a two-component system; i.e., kinase and substrate. The chromatography of soluble proteins on Ultrogel AcA44 separated the phosphate acceptor protein(s) from the phosphoenolpyruvate-dependent protein kinase activity.  相似文献   

8.
Properties and intracellular localization of calpain activator protein   总被引:1,自引:0,他引:1  
In this paper, we have further analyzed the properties of calpain activator (CA) in order to better define its physiological function. The activator shows a pH optimum approximately 7.8-8.0, independently of the nature of the buffer used. Although the maximal activity is observed with human acid-denatured globin, the effect of CA is detectable with other protein substrates, such as casein and insulin. A comparable activating effect is observed also with the synthetic substrate Succ-Leu-Tyr-AMC. The activatory effect has been evaluated in a reconstructed system, using plasma membrane Ca(2+)-ATPase as substrate. CA is localized in erythrocyte precursor cells on the inner surface of the plasma membrane in very high amount and its level profoundly decreases up to 10% of the original value when cells reach the terminal differentiated state.  相似文献   

9.
10.
Summary The Ca2+ activated neutral protease calpain II in a concentration-dependent manner sequentially degrades the Junctional foot protein (JFP) of rabbit skeletal muscle triad junctions in either the triad membrane or as the pure protein. This progression is inhibited by calmodulin. Calpain initially cleaves the 565 kDa JFP monomer into peptides of 160 and 410 kDa, which is subsequently cleaved to 70 and 340 kDa. The 340 kDa peptide is finally cleaved to 140 and 200 kDa or its further products. When the JFP was labeled in the triad membrane with the hydrophobic probe 3-(trifuoromethyl) 3-(m) [125I]iodophenyl diazirine and then isolated and proteolysed with calpain II, the [125I] was traced from the 565 kDa parent to M r, 410 kDa and then to 340 kDa, implying that these large fragments contain the majority of the transmembrane segments. A 70-kDa frament was also labeled with the hydrophobic probe, although weakly suggesting an additional transmembrane segment in the middle of the molecule. These transmembrane segments have been predicted to be in the C-terminal region of the JFP. Using an ALOM program, we also predict that transmembrane segments may exist in the 70 kDa fragment. The JFP has eight PEDST sequences; this finding together with the calmodulin inhibition of calpain imply that the JFP is a PEDST-type calpain substrate. Calpain usually cleaves such substrates at or near calmodulin binding sites. Assuming such sites for proteolysis, we propose that the fragments of the JFP correspond to the monomer sequence in the following order from the N-terminus: 160, 70, 140 and 200 kDa. For this model, new calmodulin sequences are predicted to exist near 160 and 225 kDa from the N-terminus. When the intact JFP was labeled with azidoATP, label appeared in the 160 and 140 kDa fragments, which according to the above model contain the GXGXXG sequences postulated as ATP binding sites. This transmembrane segment was predicted by the ALOM program. In addition, calpain and calpastatin activities remained associated with triad component organelles throughout their isolation. These findings and the existence of PEDST sequences suggest that the JFP is normally degraded by calpain in vivo and that degradation is regulated by calpastatin and calmodulin  相似文献   

11.
Several protein kinases were recently proposed for involvement in GLP-1-stimulated D-glucose transport in skeletal muscle from both normal subjects and type 2 diabetic patients. This study was mainly aimed at investigating the effect of potential inhibitors of distinct protein kinases and protein phosphatase-1 upon insulin- and GLP-1-stimulated 2-deoxy-D-glucose net uptake by normal rat skeletal muscle. The basal uptake of the D-glucose analog was decreased by wortmannin--a phosphatidylinositol-3-kinase inhibitor--, PD98059--a mitogen-activated protein kinases inhibitor--, and TNFalpha--a protein phosphatase-1 inhibitor--, but not by either rapamycin--a p70s6 kinase inhibitor--, or H-7--, a protein kinase C inhibitor--. The enhancing action of both insulin and GLP-1 upon 2-deoxy-D-glucose transport was abolished by PD98059 and H-7, but largely unaffected by TNFalpha. Wortmannin and rapamycin preferentially affected the response to GLP-1 and insulin, respectively. These findings thus document both analogies and dissimilarities in the participation of the concerned enzymes in the stimulant action of insulin versus GLP-1 upon D-glucose transport in normal rat skeletal muscle.  相似文献   

12.
13.
Hypoxia affects mammalian mitochondrial function, as well as mitochondria-based energy metabolism. The detail mechanism has not been fully understood. In this study, we detected protein expression levels in mitochondrial fractions of Wistar rats exposed to hypobaric hypoxia by use of proteomic methods. Adult male Wistar rats were randomized into an hypoxic (4,500?m, 30 days) group and a normoxic control group (sea level). Gastrocnemius muscles mitochondria were extracted and purified. Mitochondrial oxygen consumption was measured with a Clark oxygen electrode; mitochondrial transmembrane potential was detected with Rhodamine 123 as a fluoresce probe. Using 2-DE and MALDI-TOF MS analysis, we identified eight mitochondrial protein spots that were differentially expressed in the hypoxic group compared with the normoxic control. These proteins included Chain A of F1-ATPase, voltage dependent anion channel 1 (VDAC), hydroxyacyl Coenzyme A dehydrogenase α-subunit, mitochondrial F1 complex γ-subunit, androgen-regulated protein and tripartite motif protein 50. Two of the spots, VDAC and ATP synthase α-subunit, were confirmed by Western blotting analysis. Oxygen consumption during State 3 respiration, as well as the respiratory control ratio (RCR) was significantly higher in the control than that in the hypoxic group; mitochondrial transmembrane potential was significantly higher in hypoxic group than that in the control. With successful use of multiple proteomic analysis techniques, we demonstrates that 30 days hypoxia exposure has effects on the expression of mitochondrial proteins involved in ATP production and lipid metabolism, decrease the stability of mitochondrial membrane, and affect the mitochondrial electron transport chain.  相似文献   

14.
Summary Observations described here provide the first demonstration that calpain (Ca2+-dependent cysteine protease) can degrade proteins of skeletal muscle plasma membranes. Frog muscle plasma membrane vesicles were incubated with calpain preparations and alterations of protein composition were revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Calpain II (activated by millimolar concentrations of Ca2+) was isolated from frog skeletal muscle, but the activity of calpain I (activated by micromolar concentrations of Ca2+) was lost during attempts at fractionation. Calpain I obtained from skeletal muscle and erythrocytes of rats was tested instead, and exerted effects similar to those of frog muscle calpain on the membrane proteins. All of the calpain preparations caused striking losses of a major membrane protein of molecular mass of approximately 97 kDa, designated band c, and diminution of a thinner band of approximately 200 kDa. There were concomitant increases in 83-and 77-kDa polypeptides. These effects were absolutely dependent on the presence of free Ca2+, and were completely blocked by calpastatin, a specific inhibitor of calpain action. Frog muscle calpain differed only in being relatively more active at 0°C than were the calpains from rat tissues. Experimental observations suggest that calpain acts at the cytoplasmic surface of the plasma membrane.  相似文献   

15.
Administration of beta-adrenergic agonists to domestic species can lead to skeletal muscle hypertrophy, probably by reducing the rate of myofibrillar protein breakdown. Myofibrillar breakdown is associated with the calcium-dependent proteinase system (calpains I,II and calpastatin) whose activity also changes during beta-agonist treatment. A number of growth trials using the agonists cimaterol and clenbuterol with cattle, sheep, chicken and rat are reported which suggest a general mechanism whereby beta-agonists reduce calpain I activity, but increase calpain II and calpastatin activity in skeletal muscle. Parallel changes in specific mRNAs indicate that changes in gene expression or stabilisation of mRNA could in part explain the changes in activity.  相似文献   

16.
Electrical stimulation of the sciatic nerve of the anaesthetized rat in vivo led to a time-dependent translocation of protein kinase C from the muscle cytosol to the particulate fraction. Maximum activity of protein kinase C in the particulate fraction occurred after 2 min of intermittent short tetanic contractions of the gastrocnemius-plantaris-soleus muscle group and coincided with the loss of activity from the cytosol. Translocation of protein kinase C may imply a role for this kinase in contraction-initiated changes in muscle metabolism.  相似文献   

17.
S Nakielny  P Cohen  J Wu    T Sturgill 《The EMBO journal》1992,11(6):2123-2129
A 'MAP kinase activator' was purified several thousand-fold from insulin-stimulated rabbit skeletal muscle, which resembled the 'activator' from nerve growth factor-stimulated PC12 cells in that it could be inactivated by incubation with protein phosphatase 2A, but not by protein tyrosine phosphatases and its apparent molecular mass was 45-50 kDa. In the presence of MgATP, 'MAP kinase activator' converted the normal 'wild-type' 42 kDa MAP kinase from an inactive dephosphorylated form to the fully active diphosphorylated species. Phosphorylation occurred on the same threonine and tyrosine residues which are phosphorylated in vivo in response to growth factors or phorbol esters. A mutant MAP kinase produced by changing a lysine at the active centre to arginine was phosphorylated in an identical manner by the 'MAP kinase activator', but no activity was generated. The results demonstrate that 'MAP kinase activator' is a protein kinase (MAP kinase kinase) and not a protein that stimulates the autophosphorylation of MAP kinase. MAP kinase kinase is the first established example of a protein kinase that can phosphorylate an exogenous protein on threonine as well as tyrosine residues.  相似文献   

18.
Summary By using a double-affmity-purified first antibody and colloidal gold-conjugated second antibody, it is shown that calpain I (a cysteine proteinase activated by micromolar concentrations of Ca2+) has a predominant intracellular location in the I-band region of the extensor digitorum longus (EDL) muscle of the rat, but is not exclusively associated with the Z-line.  相似文献   

19.
Age-related protein nitration was studied in skeletal muscle of Fisher 344 and Fisher 344/Brown Norway (BN) F1 rats by a proteomic approach. Proteins from young (4 months) and old (24 months) Fisher 344 rats and young (6 months) and old (34 months) Fisher 344/BN F1 animals were separated by 2-D gel electrophoresis. Western blot showed an age-related increase in the nitration of a few specific proteins, which were identified by MALDI-TOF MS and ESI-MS/MS. We identified age-dependent apparent nitration of beta-enolase, alpha-fructose aldolase, and creatine kinase, which perform important functions in muscle energy metabolism, suggesting that the nitration of such key proteins can be, in part, responsible for the decline of muscle motor function of the muscle. Furthermore, we have identified the apparent nitration of succinate dehydrogenase, rab GDP dissociation inhibitor beta (GdI-2), triosephosphate isomerase, troponin I, alpha-crystallin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).  相似文献   

20.
Studies of the reversible binding of [3H]cortisol by rat gastrocnemius muscle cytoplasm in vitro reveal specific binding in the 27,000 times g supernatant fraction at 0 degrees. The [3H]cortisol-binding molecule had an apparant Kd value of 1.7 times 10-7 M and the number of binding sites was 0.99 pmol per mg of cytosol protein. Only a single class of [3H]cortisol-binding sites could be detected, whose protein nature was suggested by its susceptibility to nagarse. The [3H]cortisol-protein complex sedimented at similar to 4 S in a 5 to 20% sucrose gradient either in the presence or absence of 0.3 M KCl. Binding increased more than 2-fold in adrenalectomized rats and was markedly reduced in the muscle of rats pretreated with cortisol. In contrast to the binding of [3H]dexamethasone and [3H]triamcinolone acetonide to receptor proteins in muscle, no correlation was found between the ability of various steroids to complete wtth [3H]cortisol binding and their glucocorticoid potency: [3H]cortisol binding was inhibited by a 1000-fold higher concentration of unlabeled cortisol and progesterone but not by dexamethasone or triamcinolone acetonide. It is therefore suggested that the [3H]cortisol-binding reaction is not directly involved in the biological effects of all potent glucocorticoids in skeletal muscle. The [3H]cortisol-binding protein in muscle cytosol could not be unequivocally distinguished from rat plasma corticosteroid-binding globulin, because both had similar steroid specificity and temperature stability, were not markedly affected by--SH reagents, and displayed similar sedimentation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号