首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.  相似文献   

2.
Key to mitochondrial activities is the maintenance of mitochondrial morphology, specifically cristae structures formed by the invagination of the inner membrane that are enriched in proteins of the electron transport chain. In Saccharomyces cerevisiae , these cristae folds are a result of the membrane fusion activities of Mgm1p and the membrane‐bending properties of adenosine triphosphate (ATP) synthase oligomerization. An additional protein linked to mitochondrial morphology is Pcp1p, a serine protease responsible for the proteolytic processing of Mgm1p. Here, we have used hydroxylamine‐based random mutagenesis to identify amino acids important for Pcp1p peptidase activity. Using this approach we have isolated five single amino acid mutants that exhibit respiratory growth defects that correlate with loss of mitochondrial genome stability. Reduced Pcp1p protease activity was confirmed by immunoblotting with the accumulation of improperly processed Mgm1p. Ultra‐structural analysis of mitochondrial morphology in these mutants found a varying degree of defects in cristae organization. However, not all of the mutants presented with decreased ATP synthase complex assembly as determined by blue native polyacrylamide gel electrophoresis. Together, these data suggest that there is a threshold level of processed Mgm1p required to maintain ATP synthase super‐complex assembly and mitochondrial cristae organization.  相似文献   

3.
Mgm1p is a nuclearly encoded GTPase important for mitochondrial fusion. Long and short isoforms of the protein are generated in a unique "alternative topogenesis" process in which the most N-terminal of two hydrophobic segments in the protein is inserted into the inner mitochondrial membrane in about half of the molecules and translocated across the inner membrane in the other half. In the latter population, the second hydrophobic segment is cleaved by the inner membrane protease Pcp1p, generating the short isoform. Here, we show that charged residues in the regions flanking the first segment critically affect the ratio between the two isoforms, providing new insight into the importance of charged residues in the insertion of proteins into the mitochondrial inner membrane.  相似文献   

4.
Mitochondrial membranes maintain a specific phospholipid composition. Most phospholipids are synthesized in the endoplasmic reticulum (ER) and transported to mitochondria, but cardiolipin and phosphatidylethanolamine are produced in mitochondria. In the yeast Saccharomyces cerevisiae, phospholipid exchange between the ER and mitochondria relies on the ER-mitochondria encounter structure (ERMES) complex, which physically connects the ER and mitochondrial outer membrane. However, the proteins and mechanisms involved in phospholipid transport within mitochondria remain elusive. Here, we investigated the role of the conserved intermembrane space proteins, Ups1p and Ups2p, and an inner membrane protein, Mdm31p, in phospholipid metabolism. Our data show that loss of the ERMES complex, Ups1p, and Mdm31p causes similar defects in mitochondrial phospholipid metabolism, mitochondrial morphology, and cell growth. Defects in cells lacking the ERMES complex or Ups1p are suppressed by Mdm31p overexpression as well as additional loss of Ups2p, which antagonizes Ups1p. Combined loss of the ERMES complex and Ups1p exacerbates phospholipid defects. Finally, pulse-chase experiments using [(14)C]serine revealed that Ups1p and Ups2p antagonistically regulate conversion of phosphatidylethanolamine to phosphatidylcholine. Our results suggest that Ups proteins and Mdm31p play important roles in phospholipid biosynthesis in mitochondria. Ups proteins may function in phospholipid trafficking between the outer and inner mitochondrial membranes.  相似文献   

5.
Mutations in the dynamin-related GTPase, Mgm1p, have been shown to cause mitochondrial aggregation and mitochondrial DNA loss in Saccharomyces cerevisiae cells, but Mgm1p's exact role in mitochondrial maintenance is unclear. To study the primary function of MGM1, we characterized new temperature sensitive MGM1 alleles. Examination of mitochondrial morphology in mgm1 cells indicates that fragmentation of mitochondrial reticuli is the primary phenotype associated with loss of MGM1 function, with secondary aggregation of mitochondrial fragments. This mgm1 phenotype is identical to that observed in cells with a conditional mutation in FZO1, which encodes a transmembrane GTPase required for mitochondrial fusion, raising the possibility that Mgm1p is also required for fusion. Consistent with this idea, mitochondrial fusion is blocked in mgm1 cells during mating, and deletion of DNM1, which encodes a dynamin-related GTPase required for mitochondrial fission, blocks mitochondrial fragmentation in mgm1 cells. However, in contrast to fzo1 cells, deletion of DNM1 in mgm1 cells restores mitochondrial fusion during mating. This last observation indicates that despite the phenotypic similarities observed between mgm1 and fzo1 cells, MGM1 does not play a direct role in mitochondrial fusion. Although Mgm1p was recently reported to localize to the mitochondrial outer membrane, our studies indicate that Mgm1p is localized to the mitochondrial intermembrane space. Based on our localization data and Mgm1p's structural homology to dynamin, we postulate that it functions in inner membrane remodeling events. In this context, the observed mgm1 phenotypes suggest that inner and outer membrane fission is coupled and that loss of MGM1 function may stimulate Dnm1p-dependent outer membrane fission, resulting in the formation of mitochondrial fragments that are structurally incompetent for fusion.  相似文献   

6.
Mitochondrial morphology and inheritance of mitochondrial DNA in yeast depend on the dynamin-like GTPase Mgm1. It is present in two isoforms in the intermembrane space of mitochondria both of which are required for Mgm1 function. Limited proteolysis of the large isoform by the mitochondrial rhomboid protease Pcp1/Rbd1 generates the short isoform of Mgm1 but how this is regulated is unclear. We show that near its NH2 terminus Mgm1 contains two conserved hydrophobic segments of which the more COOH-terminal one is cleaved by Pcp1. Changing the hydrophobicity of the NH2-terminal segment modulated the ratio of the isoforms and led to fragmentation of mitochondria. Formation of the short isoform of Mgm1 and mitochondrial morphology further depend on a functional protein import motor and on the ATP level in the matrix. Our data show that a novel pathway, to which we refer as alternative topogenesis, represents a key regulatory mechanism ensuring the balanced formation of both Mgm1 isoforms. Through this process the mitochondrial ATP level might control mitochondrial morphology.  相似文献   

7.
A balance between fission and fusion events determines the morphology of mitochondria. In yeast, mitochondrial fission is regulated by the outer membrane-associated dynamin-related GTPase, Dnm1p. Mitochondrial fusion requires two integral outer membrane components, Fzo1p and Ugo1p. Interestingly, mutations in a second mitochondrial-associated dynamin-related GTPase, Mgm1p, produce similar phenotypes to fzo1 and ugo cells. Specifically, mutations in MGM1 cause mitochondrial fragmentation and a loss of mitochondrial DNA that are suppressed by abolishing DNM1-dependent fission. In contrast to fzo1ts mutants, blocking DNM1-dependent fission restores mitochondrial fusion in mgm1ts cells during mating. Here we show that blocking DNM1-dependent fission in Deltamgm1 cells fails to restore mitochondrial fusion during mating. To examine the role of Mgm1p in mitochondrial fusion, we looked for molecular interactions with known fusion components. Immunoprecipitation experiments revealed that Mgm1p is associated with both Ugo1p and Fzo1p in mitochondria, and that Ugo1p and Fzo1p also are associated with each other. In addition, genetic analysis of specific mgm1 alleles indicates that Mgm1p's GTPase and GTPase effector domains are required for its ability to promote mitochondrial fusion and that Mgm1p self-interacts, suggesting that it functions in fusion as a self-assembling GTPase. Mgm1p's localization within mitochondria has been controversial. Using protease protection and immuno-EM, we have shown previously that Mgm1p localizes to the intermembrane space, associated with the inner membrane. To further test our conclusions, we have used a novel method using the tobacco etch virus protease and confirm that Mgm1p is present in the intermembrane space compartment in vivo. Taken together, these data suggest a model where Mgm1p functions in fusion to remodel the inner membrane and to connect the inner membrane to the outer membrane via its interactions with Ugo1p and Fzo1p, thereby helping to coordinate the behavior of the four mitochondrial membranes during fusion.  相似文献   

8.
The dynamin-related GTPase, Mgm1p, is critical for the fusion of the mitochondrial outer membrane, maintenance of mitochondrial DNA (mtDNA), formation of normal inner membrane structures, and inheritance of mitochondria. Although there are two forms of Mgm1p, 100 and 90 kDa, their respective functions and the mechanism by which these two forms are produced are not clear. We previously isolated ugo2 mutants in a genetic screen to identify components involved in mitochondrial fusion [J. Cell Biol. 152 (2001) 1123]. In this paper, we show that ugo2 mutants are defective in PCP1, a gene encoding a rhomboid-related serine protease. Cells lacking Pcp1p are defective in the processing of Mgm1p and produce only the larger (100 kDa) form of Mgm1p. Similar to mgm1delta cells, pcp1delta cells contain partially fragmented mitochondria, instead of the long tubular branched mitochondria of wild-type cells. In addition, pcp1delta cells, like mgm1delta cells, lack mtDNA and therefore are unable to grow on nonfermentable medium. Mutations in the catalytic domain lead to complete loss of Pcp1p function. Similar to mgm1delta cells, the fragmentation of mitochondria and loss of mtDNA of pcp1delta cells were rescued when mitochondrial division was blocked by inactivating Dnm1p, a dynamin-related GTPase. Surprisingly, in contrast to mgm1delta cells, which are completely defective in mitochondrial fusion, pcp1delta cells can fuse their mitochondria after yeast cell mating. Our study demonstrates that Pcp1p is required for the processing of Mgm1p and controls normal mitochondrial shape and mtDNA maintenance by producing the 90 kDa form of Mgm1p. However, the processing of Mgm1p is not strictly required for mitochondrial fusion, indicating that the 100 kDa form is sufficient to promote fusion.  相似文献   

9.
In yeast, mitochondrial fusion requires Ugo1p and two GTPases, Fzo1p and Mgm1p. Ugo1p is anchored in the mitochondrial outer membrane with its N terminus facing the cytosol and C terminus in the intermembrane space. Fzo1p is also an outer membrane protein, whereas Mgm1p is located in the intermembrane space. Recent studies suggest that these three proteins form protein complexes that mediate mitochondrial fusion. Here, we show that the cytoplasmic domain of Ugo1p directly interacts with Fzo1p, whereas its intermembrane space domain binds to Mgm1p. We identified the Ugo1p-binding site in Fzo1p and demonstrated that Ugo1p-Fzo1p interaction is essential for the formation of mitochondrial shape, maintenance of mitochondrial DNA, and fusion of mitochondria. Although the GTPase domains of Fzo1p and Mgm1p regulate mitochondrial fusion, they were not required for association with Ugo1p. Furthermore, we found that Ugo1p bridges the interaction between Fzo1p and Mgm1p in mitochondria. Our data indicate that distinct regions of Ugo1p bind directly to Fzo1p and Mgm1p and thereby link these two GTPases during mitochondrial fusion.  相似文献   

10.
The mdm17 mutation causes temperature-dependent defects in mitochondrial inheritance, mitochondrial morphology, and the maintenance of mitochondrial DNA in the yeast Saccharomyces cerevisiae. Defects in mitochondrial transmission to daughter buds and changes in mitochondrial morphology were apparent within 30 min after shifting cells to 37 degrees C, while loss of the mitochondrial genome occurred after 4-24 h at the elevated temperature. The mdm17 lesion mapped to MGM1, a gene encoding a dynamin-like GTPase previously implicated in mitochondrial genome maintenance, and the cloned MGM1 gene complements all of the mdm17 mutant phenotypes. Cells with an mgm1-null mutation displayed aberrant mitochondrial inheritance and morphology. A version of mgm1 mutated in a conserved residue in the putative GTP-binding site was unable to complement any of the mutant defects. It also caused aberrant mitochondrial distribution and morphology when expressed at high levels in cells that also contained a wild-type copy of the gene. Mgm1p was localized to the mitochondrial outer membrane and fractionated as a component of a high molecular weight complex. These results indicate that Mgm1p is a mitochondrial inheritance and morphology component that functions on the mitochondrial surface.  相似文献   

11.
Rhomboids are a family of intramembrane serine proteases that are conserved in bacteria, archaea, and eukaryotes. They are required for numerous fundamental cellular functions such as quorum sensing, cell signaling, and mitochondrial dynamics. Mitochondrial rhomboids form an evolutionarily distinct class of rhomboids. It is largely unclear how their activity is controlled and which substrate determinants are responsible for recognition and cleavage. We investigated these requirements for the mitochondrial rhomboid protease Pcp1 and its substrate Mgm1. In contrast to several other rhomboid proteases, Pcp1 does not require helix-breaking amino acids in the cleaved hydrophobic region of Mgm1, termed ‘rhomboid cleavage region’ (RCR). Even transmembrane segments of inner membrane proteins that are normally not processed by Pcp1 become cleavable when put in place of the authentic RCR of Mgm1. We further show that mutational alterations of a highly negatively charged region located C-terminally to the RCR led to a strong processing defect. Moreover, we show that the determinants required for Mgm1 processing by mitochondrial rhomboid protease are conserved during evolution, as PARL (the human ortholog of Pcp1) showed similar substrate requirements. These results suggest a surprising promiscuity of the mitochondrial rhomboid protease regarding the sequence requirements of the cleaved hydrophobic segment. We propose a working hypothesis on how the mitochondrial rhomboid protease can, despite this promiscuity, achieve a high specificity in recognizing Mgm1. This hypothesis relates to the exceptional biogenesis pathway of Mgm1.  相似文献   

12.
The sorting of an individual transmembrane (TM) segment of multi-spanning membrane proteins by the TIM23 complex in the mitochondrial inner membrane is poorly understood. Using the Mgm1 fusion approach, we attempted to assess the membrane insertion of individual TM segments of Mdl1p and Mdl2p, mitochondrial ABC transporters. Although these transporters share high sequence similarity, our results show that their membrane sorting patterns differ and that specific residues in TM domains strongly influence membrane insertion or translocation. These data imply that TIM23-mediated membrane insertion highly depends on the TM domain sequence context.  相似文献   

13.
Oxa1p, a nuclear-encoded protein of the mitochondrial inner membrane with five predicted transmembrane (TM) segments is synthesized as a precursor (pOxa1p) with an N-terminal presequence. It becomes imported in a process requiring the membrane potential, matrix ATP, mt-Hsp70 and the mitochondrial processing peptidase (MPP). After processing, the negatively charged N-terminus of Oxa1p (approximately 90 amino acid residues) is translocated back across the inner membrane into the intermembrane space and thereby attains its native N(out)-C(in) orientation. This export event is dependent on the membrane potential. Chimeric preproteins containing N-terminal stretches of increasing lengths of Oxa1p fused on mouse dehydrofolate reductase (DHFR) were imported into isolated mitochondria. In each case, their DHFR moieties crossed the inner membrane into the matrix. Thus Oxa1p apparently does not contain a stop transfer signal. Instead the TM segments are inserted into the membrane from the matrix side in a pairwise fashion. The sorting pathway of pOxa1p is suggested to combine the pathways of general import into the matrix with a bacterial-type export process. We postulate that at least two different sorting pathways exist in mitochondria for polytopic inner membrane proteins, the evolutionarily novel pathway for members of the ADP/ATP carrier family and a conserved Oxa1p-type pathway.  相似文献   

14.
Ingrid Leroy  Alan Diot 《FEBS letters》2010,584(14):3153-3157
Mitochondrial fusion depends on the evolutionary conserved dynamin, OPA1/Mgm1p/Msp1p, whose activity is controlled by proteolytic processing. Since processing diverges between Mgm1p (Saccharomyces cerevisiae) and OPA1 (mammals), we explored this process in another model, Msp1p in Schizosaccharomyces pombe. Generation of the short isoform of Msp1p neither results from the maturation of the long isoform nor correlates with mitochondrial ATP levels. Msp1p is processed by rhomboid and a protease of the matrix ATPase associated with various cellular activities (m-AAA) family. The former is involved in the generation of short Msp1p and the latter in the stability of long Msp1p. These results reveal that Msp1p processing may represent an evolutionary switch between Mgm1p and OPA1.  相似文献   

15.
Cardiolipin, a unique phospholipid composed of four fatty acid chains, is located mainly in the mitochondrial inner membrane (IM). Cardiolipin is required for the integrity of several protein complexes in the IM, including the TIM23 translocase, a dynamic complex which mediates protein import into the mitochondria through interactions with the import motor presequence translocase–associated motor (PAM). In this study, we report that two homologous intermembrane space proteins, Ups1p and Ups2p, control cardiolipin metabolism and affect the assembly state of TIM23 and its association with PAM in an opposing manner. In ups1Δ mitochondria, cardiolipin levels were decreased, and the TIM23 translocase showed altered conformation and decreased association with PAM, leading to defects in mitochondrial protein import. Strikingly, loss of Ups2p restored normal cardiolipin levels and rescued TIM23 defects in ups1Δ mitochondria. Furthermore, we observed synthetic growth defects in ups mutants in combination with loss of Pam17p, which controls the integrity of PAM. Our findings provide a novel molecular mechanism for the regulation of cardiolipin metabolism.  相似文献   

16.
Mitochondrial outer- and inner-membrane fusion events are coupled in vivo but separable and mechanistically distinct in vitro, indicating that separate fusion machines exist in each membrane. Outer-membrane fusion requires trans interactions of the dynamin-related GTPase Fzo1, GTP hydrolysis, and an intact inner-membrane proton gradient. Inner-membrane fusion also requires GTP hydrolysis but distinctly requires an inner-membrane electrical potential. The protein machinery responsible for inner-membrane fusion is unknown. Here, we show that the conserved intermembrane-space dynamin-related GTPase Mgm1 is required to tether and fuse mitochondrial inner membranes. We observe an additional role of Mgm1 in inner-membrane dynamics, specifically in the maintenance of crista structures. We present evidence that trans Mgm1 interactions on opposing inner membranes function similarly to tether and fuse inner membranes as well as maintain crista structures and propose a model for how the mitochondrial dynamins function to facilitate fusion.  相似文献   

17.
Ishihara N  Fujita Y  Oka T  Mihara K 《The EMBO journal》2006,25(13):2966-2977
The dynamin-like GTPase OPA1, a causal gene product of human dominant optic atrophy, functions in mitochondrial fusion and inner membrane remodeling. It has several splice variants and even a single variant is found as several processed forms, although their functional significance is unknown. In yeast, mitochondrial rhomboid protease regulates mitochondrial function and morphology through proteolytic cleavage of Mgm1, the yeast homolog of OPA1. We demonstrate that OPA1 variants are synthesized with a bipartite-type mitochondrial targeting sequence. During import, the matrix-targeting signal is removed and processed forms (L-isoforms) are anchored to the inner membrane in type I topology. L-isoforms undergo further processing in the matrix to produce S-isoforms. Knockdown of OPA1 induced mitochondrial fragmentation, whose network morphology was recovered by expression of L-isoform but not S-isoform, indicating that only L-isoform is fusion-competent. Dissipation of membrane potential, expression of m-AAA protease paraplegin, or induction of apoptosis stimulated this processing along with the mitochondrial fragmentation. Thus, mammalian mitochondrial function and morphology is regulated through processing of OPA1 in a DeltaPsi-dependent manner.  相似文献   

18.
Phosphatidylethanolamine (PE) plays important roles for the structure and function of mitochondria and other intracellular organelles. In yeast, the majority of PE is produced from phosphatidylserine (PS) by a mitochondrion-located PS decarboxylase, Psd1p. Because PS is synthesized in the endoplasmic reticulum (ER), PS is transported from the ER to mitochondria and converted to PE. After its synthesis, a portion of PE moves back to the ER. Two mitochondrial proteins located in the intermembrane space, Ups1p and Ups2p, have been shown to regulate PE metabolism by controlling the export of PE. It remains to be determined where PS is decarboxylated in mitochondria and whether decarboxylation is coupled to trafficking of PS. Here, using fluorescent PS as a substrate in an in vitro assay for Psd1p-dependent PE production in isolated mitochondria, we show that PS is transferred from the mitochondrial outer membrane to the inner membrane independently of Psd1p, Ups1p, and Ups2p and decarboxylated to PE by Psd1p in the inner membrane. Interestingly, Ups1p is required for the maintenance of Psd1p and therefore PE production. Restoration of Psd1p levels rescued PE production defects in ups1Δ mitochondria. Our data provide novel mechanistic insight into PE biogenesis in mitochondria.  相似文献   

19.
Components of some protein complexes present in the inner membrane of mitochondria are encoded in both nuclear and mitochondrial genomes, and correct sorting and assembly of these proteins is necessary for proper respiratory function. Recent studies in yeast suggest that Oxa1p, a protein conserved between prokaryotes and eukaryotes, is an essential factor for protein sorting and assembly into membranes. We previously identified AtOXA1, an Arabidopsis homologue of OXA1 by functional complementation of a yeast oxa1- mutant. In this study, we investigated the genomic organization of AtOXA1 and localization of the AtOXA1 protein. Characterization of the AtOXA1 genomic region indicated that the gene consists of 10 exons and is located on chromosome V. A database search also revealed another gene coding for a putative protein homologous to AtOXA1 on chromosome II. Transient expression of a green fluorescent protein (GFP) fusion in suspension-cultured tobacco cells showed that AtOXA1 is targeted into mitochondria by its N-terminal presequence. Antibodies raised against AtOXA1 recognized a 38-kDa intrinsic protein of the inner mitochondrial membrane. Thus, localization of AtOXA1 in the mitochondrial inner membrane, together with our previous complementation experiment in yeast, suggested that it is a functional homologue of Oxa1p.  相似文献   

20.
Mgm1 is a member of the dynamin family of GTP-binding proteins. Mgm1 was first identified in yeast, where it affects mitochondrial morphology. The human homologue of Mgm1 is called OPA1. Mutations in the OPA1 gene are the prevailing cause of dominant optic atrophy, a hereditary disease in which progressive degeneration of the optic nerve can lead to blindness. Here we investigate the properties of the Mgm1/OPA1 protein in mammalian cells. We find that Mgm1/OPA1 is localized to the mitochondrial intermembrane space, where it is tightly bound to the outer surface of the inner membrane. Overexpression of wild type or mutant forms of the Mgm1/OPA1 protein cause mitochondria to fragment and, in some cases, cluster near the nucleus, whereas the loss of protein caused by small interfering RNA (siRNA) leads to dispersal of mitochondrial fragments throughout the cytosol. The cristae of these fragmented mitochondria are disorganized. At early time points after transfection with Mgm1/OPA1 siRNA, the mitochondria are not yet fragmented. Instead, the mitochondria swell and stretch, after which they form localized constrictions similar to the mitochondrial abnormalities observed during the early stages of apoptosis. These abnormalities might be the earliest effects of losing Mgm1/OPA1 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号