首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of ethanol on the activity of membrane-bound and soluble acetylcholinesterase (AChE) in sarcoplasmic reticulum of skeletal muscle has been studied. Treatment of membranes with 2.5–12.5% v/v ethanol produced a slight stimulation of the AChE activity and inhibition at higher concentration. The enzyme remained associated with the membranes after these treatments. The enzyme solubilized with Triton X-100 was inhibited by ethanol in a time-independent manner. Isolated 16 S (A12), 10.5 S (G4) and 4.5 S (G1) forms of AChE were inhibited by ethanol to a similar extent. Samples were reversibly inhibited by ethanol, up to 12.5% v/v, and irreversibly at higher concentrations. Kinetic studies performed with isolated forms in the presence of 5–12.5% v/v ethanol showed that the solvent behaved as a competitive inhibitor of the asymmetric form but as a mixed inhibitor of the tetrameric and monomeric forms. The results show that the solvent interacts with active and/or regulatory sites of AChE from muscle microsomes.  相似文献   

2.
Summary The mucosal cells of the chicken intestine contain a cholinesterase activity essentially due to butyrylcholinesterase. The enzyme is present during embryonic and post-hatching development. The activity reaches a maximum value at day 19 in ovo and decreases prior to and after hatching up to day 4 ex ovo. Then the activity again rises reaching a second maximum at 2–3 weeks. Beyond this stage, the activity slowly decreases leveling off to the value determined in adult chicken. The enzyme exists as two globular forms (G1 and G4) soluble at low-ionic strengths. The G4 form is predominant in ovo up to day 19. From this stage and after hatching the G1 form is the main one. This change in the form proportion differentiates the mucosal cell butyrylcholinesterase from butyrylcholinesterase of other origins such as the chicken plasma enzyme which always shows a predominant G4 form.Abbreviations AChE Acetylcholinesterase - BuChE Butyrylcholinesterase  相似文献   

3.
Attempts were made to solubilize acetylcholinesterase (AChE) from microsomal membranes isolated from rabbit white muscle. The preparative procedure included a step in which the microsomes were incubated in a solution containing high salt concentration (0.6 M KCl). About 15% of the total enzyme activity could be solubilized with dilute buffer. Addition of EDTA (1 mM), EGTA (1 mM) or NaCl (0.5 and 1 M) to the extraction buffer did not improve the solubilization yield. Several non-ionic detergents and biliary salts were then used to bring the enzyme into solution. Triton X-100, C12E9 (dodecylnonaethylenglycol monoether) and biliary salt, above their critical micellar concentration, proved to be very effective as solubilizing agents. The occurrence of multiple molecular forms in detergent-soluble AChE was investigated by means of molecular sieving, centrifugation analysis, and slab gel electrophoresis. Experiments on gel filtration showed that, during the process, half of the enzyme was transformed into aggregates, the rest of the activity appearing as peaks with Stokes radii ranging from 3.7 to 7.9 nm. Both ionic strength and detergent nature modify the number and relative proportion of these peaks. Centrifugation analysis of Triton-saline-soluble AChE yielded molecular forms of 4.8S, 10–11S, and 13.5S, whereas deoxycholate extracts revealed species of 4.8S, 10S, and 15S, providing that gradients were prepared with 0.5 M NaCl. In the absence of salt, forms of 6.5–7.5S, 10S, and 15S were measured. The lightest species was always the predominant form. Slab gel electrophoresis showed several bands (68,000–445,000). The 4.8S component only yielded bands of 65,000–70,000. The results suggest that the monomeric form of AChE (4.8S), the most abundant species in muscle microsomes, has a Stokes radius of 3.3 nm and a molecular weight in the range of 70,000.  相似文献   

4.
The effect of eight different acetylcholinesterase inhibitors (AChEIs) on the activity of acetylcholinesterase (AChE) molecular forms was investigated. Aqueous-soluble and detergent-soluble AChE molecular forms were separated from rat brain homogenate by sucrose density sedimentation. The bulk of soluble AChE corresponds to globular tetrameric (G4), and monomeric (G1) forms. Heptylphysostigmine (HEP) and diisopropylfluorophosphate were more selective for the G1 than for the G4 form in aqueous-soluble extract. Neostigmine showed slightly more selectivity for the G1 form both in aqueous- and detergent-soluble extracts. Other drugs such as physostigmine, echothiophate, BW284C51, tetrahydroaminoacridine, and metrifonate inhibited both aqueous- and detergent-soluble AChE molecular forms with similar potency. Inhibition of aqueous-soluble AChE by HEP was highly competitive with Triton X-100 in a gradient, indicating that HEP may bind to a detergent-sensitive non-catalytic site of AChE. These results suggest a differential sensitivity among AChE molecular forms to inhibition by drugs through an allosteric mechanism. The application of these properties in developing AChEIs for treatment of Alzheimer disease is considered.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

5.
  • 1.1. We have determined the molecular forms of acetylcholinesterase (AChE) present in the skeletal muscle of the lamprey during the adult parasitic stage of its life cycle. AChE was found primarily in the globular G4 form, as well as in the asymmetric forms A4, A8 and A12.
  • 2.2. We compare the complement of molecular forms present in skeletal muscle during the larval, parasitic, and spawning stages of the lamprey life cycle. The larval form, the ammocoete, contains elevated amounts of G1 and G2. However, the most striking change that we observed was in the proportion of asymmetric forms of AChE present: 5% in the ammocoete, 28% in the parasite and 9% in the spawner.
  • 3.3. We speculate that these differences may be related to the physiological states of the lamprey during the various stages of its life cycle.
  相似文献   

6.
The severity of poisoning following acetylcholinesterase (AChE) inhibition correlates weakly with total AChE activity. This may be partly due to the existence of functional and non-functional pools of AChE. AChE consists of several molecular forms. The aim of the present study was to investigate which of these forms will correlate best with neuromuscular transmission (NMT) remaining after partial inhibition of this enzyme. Following sublethal intoxication of rats with the irreversible AChE inhibitor soman, diaphragms were isolated after 0.5 or 3 h. It appeared that at 3 h after soman poisoning the percentage of G1 increased, while those of G4 and A12 decreased. NMT was inhibited more strongly than in preparations obtained from the 0.5 h rats with the same level of AChE inhibition, but with a normal ratio of molecular forms. NMT correlated positively with G4 as well as with A12, but inversely with G1. In vitro inhibition with the charged inhibitors DEMP and echothiophate resulted in higher levels of total AChE, relatively less G1 and more G4 and A12 than after incubation with soman, but led to less NMT. Treatment of soman-intoxicated rats with the reactivating compound HI-6 resulted in preferential reactivation of A12, persisting low levels of G1 and concurrent recovery of NMT as compared with saline-treated soman controls with equal total AChE activity. Apparently, in rat diaphragm G4 and A12 are the functional AChE forms.  相似文献   

7.
Incubation of membranes derived from sarcotubular system of rabbit skeletal muscle with increasing concentrations of Triton X-100 produced both stimulation of the AChE activity and solubilization of this enzyme. Mild proteolytic treatment of microsomal membranes produced a several fold activation of the still membrane-bound acetylcholinesterase (AChE) activity. Attempts were made to solubilize AChE from microsomal membranes by proteolytic treatment. About 30–40% of the total enzyme activity could be solubilized by means of trypsin or papain. Short trypsin treatment of the microsomal membranes produced first an activation of the membrane-bound enzyme followed by solubilization. Incubation of muscle microsomes for a short time with papain yielded a significant portion of soluble enzyme. Membrane-bound enzyme activation was measured after a prolonged incubation period. These results are compared with those of solubilization obtained by treatment of membranes with progressive concentrations of Triton X-100. The occurrence of molecular forms in protease-solubilized AChE was investigated by means of centrifugation analysis and slab gel electrophoresis. Centrifugation on sucrose gradients revealed two main components of 4.4S and 10–11S in either trypsin or papain-solubilized AChE. These components behaved as hydrophilic species whereas the Triton solubilized AChE showed an amphipatic character. Application of slab gel electrophoresis showed the occurrence of forms with molecular weights of 350,000; 175,000; 165,000; 85,000 and 76,000. The stimulation of membrane-bound AChE by detergents or proteases would indicate that most of the enzyme molecules or their active sites are sequestered into the lipid bilayer through lipid-protein or protein-protein interactions and these are broken by proteolytic digestion of the muscle microsomes.  相似文献   

8.

Background

Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE) in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE) pose a major problem.

Principal Findings

Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were ∼20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G1+G2 forms and not G4 tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF) and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer''s disease (AD) patients compared to age and gender-matched controls. This increase correlates with an increase in the G1+G2 forms, the subset of AChE species which are increased in Alzheimer''s brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer''s plasma, attributed in part to AChE-T subunits common in brain and CSF.

Conclusion

Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation.  相似文献   

9.
Rat obturator nerve 16S acetylcholinesterase (16S AChE) was separated by sucrose gradient velocity sedimentation and compared to the 16S form of AChE similarly derived from endplate regions of anterior gracilis muscles. The 16S AChE from both tissues could only be extracted in high ionic strength buffer; as it aggregated under low ionic strength conditions. Treatment of nerve and muscle 16S AChE with purified collagenase, in the presence of calcium, caused an identical shift in the enzyme's sedimentation coefficient to 17.5S. Other properties which were also equivalent for 16S AChE from both tissue sources included: an excess substrate inhibition above 2×10–3 M acetylcholine andK m of 1.6×10–4 M, relative sensitivity to the specific inhibitors BW284C51 (I50 of 5×10–8 M) and Iso-OMPA (I50 of 5×10–4 M), and a half maximal thermal inactivation at 62.5°C. These and additional results indicate that the 16S forms of AChE in both tissues are analogous molecules, which have a highly asymmetric conformation probably containing a collagen-like domain. The present findings are also consistent with the view that motor neurons provide at least a fraction of the 16S AChE present at the neuromuscular junction.  相似文献   

10.
The highly organized pattern of acetylcholinesterase (AChE) molecules attached to the basal lamina of the neuromuscular junction (NMJ) suggests the existence of specific binding sites for their precise localization. To test this hypothesis we immunoaffinity purified quail globular and collagen-tailed AChE forms and determined their ability to attach to frog NMJs which had been pretreated with high-salt detergent buffers. The NMJs were visualized by labeling acetylcholine receptors (AChRs) with TRITC-α-bungarotoxin and AChE by indirect immunofluorescence; there was excellent correspondence (>97%) between the distribution of frog AChRs and AChE. Binding of the exogenous quail AChE was determined using a speciesspecific monoclonal antibody. When frog neuromuscular junctions were incubated with the globular G4/G2 quail AChE forms, there was no detectable binding above background levels, whereas when similar preparations were incubated with the collagen-tailed A12 AChE form >80% of the frog synaptic sites were also immunolabeled for quail AChE attached. Binding of the A12 quail AChE was blocked by heparin, yet could not be removed with high salt buffer containing detergent once attached. Similar results were obtained using empty myofiber basal lamina sheaths produced by mechanical or freeze-thaw damage. These experiments show that specific binding sites exist for collagen-tailed AChE molecules on the synaptic basal lamina of the vertebrate NMJ and suggest that these binding sites comprise a “molecular parking lot” in which the AChE molecules can be released, retained, and turned over.  相似文献   

11.
The epithelial cells of the human intestine exhibit a cholinesterase activity which is restricted to the apex of the villi. This activity displays a maximum in the colon and a minimum in the jejunum. Contrary to most of the studied vertebrates, the human cells present both acetylcholinesterase and butyrylcholinesterase activities, acetylcholinesterase being predominant in all the intestinal segments: duodenum, jejunum, ileum and colon. Like in the other vertebrates, only globular forms are identified by sucrose gradient centrifugation. However, the simultaneous presence, on the one hand of three globular forms (G1, G2 and G4) and, on the other hand of soluble as well as detergent-soluble molecular species seems to be a particular feature of the human cells.Abbreviations ChE Cholinesterases - AChE Acetylcholinesterase - BuChE Butyrylcholinesterase  相似文献   

12.
We studied the composition of molecular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in normal and streptozotocin-induced diabetic rat retinas. Tissues were sequentially extracted with saline (S1) and saline-detergent buffers (S2). 50% decrease in the amphiphilic G4 and G1 AChE molecular forms was observed in the diabetic retina compared to the controls. Less than 5% of the cholinesterase activity was due to BChE. 60% of the BChE activity in normal retina was brought into solution and evenly distributed between S1 and S2. In spite of the low BChE activity in the retina it was possible to detect globular forms (GA 1, GA 2, GA 4, GH 4) and a small proportion of an asymmetric form (A12) in the S1 extract. The GA 4 and GA 1 forms were found in the S2 extract. In the diabetic retina the activity of GA 4 and GA 1 BChE molecular forms was reduced 60% and 40% respectively. Our results indicate that diabetes caused a remarkable decrease in the activity of cholinesterase molecular forms in the retina. These decrease might participate in the alterations observed in the diabetic retina.  相似文献   

13.
The hydrophobic interactions of globular forms of acetylcholinesterase from adult and embryonic chick muscles have been analyzed by sucrose gradient centrifugation and non denaturing polyacrylamide gel electrophoresis. The presence of positively- or negatively-charged detergents influences the electrophoretic migrations of hydrophobic globular forms, whereas the mobility of hydrophilic components is unchanged. We defined an hydrophobicity index (HI) which quantitatively reflects this interaction.Globular forms of acetylcholinesterase were isolated in preparative sucrose gradients of muscle extracts. The G1 form (5 S) appeared as a single band in electrophoresis, the G2 form (7 S) under two and the G4 form (11 S) under three electromorphs. The G1 and the G2 forms interacted with detergents: this resulted in a shift in their sedimentation in sucrose gradients upon removal of detergents, and in a modification of their electrophoretic migrations in the presence of charged detergents (HI = 1.0 for G1, HI = 1.7 for G2). The G4 form was heterogenous: one band (G4f) did not interact with detergent (HI = 0.1). The other variants (G4i and G4s) were clearly hydrophobic (HI = 0.5 and HI = I respectively). The hydrophilic and hydrophobic variants of the G4 form however, were not resolved by sedimentation analysis performed in the presence of Triton X100, but their separation was improved in the presence of 10-oleyl-ether. Therefore, the combination of electrophoretic and sedimentation methods, as described in this paper, can be used successfully for subdividing a single molecular form (size isomer defined by hydrodynamic parameters) into several constituents differing by their hydrophobic interactions.  相似文献   

14.
The time course of effects of castration (5–60 days) and testosterone treatment (15–60 days) of adult male rats were examined on the endplate (+EP) and non-endplate (–EP) acetylcholinesterase (AChE) of the androgen-dependent levator ani (LA) muscle. The thiocholine method was used to determine the enzyme activity. Castration caused LA muscle atrophy within 5 days but reduced the –EP and +EP AChE after 10 and 20 days, respectively. Following 30 days castration –EP and +EP AChE reached respectively 41% and 35% of control activity. Testosterone retrieval restored the control values of both muscle weight and total AChE after 15 and 60 days, respectively. Recovery of the +EP AChE preceded that of –EP AChE by 30 days. The results showed that in the rat LA muscle, +EP and –EP AChE depend on a continuous testosterone regulation that predominates at +EP region spreading thereafter to –EP region. Those data suggest a hormone regulation of AChE exerted indirectly through the synthesis and release of neurotrophic substances.  相似文献   

15.
Abstract— Acetylcholinesterase (AChE) and pseudocholinesterase (°ChE) were studied in vivo and during the first several months of development of pectoral and posterior latissimi dorsi (PLD) muscles in normal and dystrophic chickens. Muscle extracts were prepared in a high ionic strength-nonionic detergent medium in the presence of protease inhibitors, in order to obtain complete solubilization and to prevent degradation of intrinsic molecular forms of both enzymes. In both normal and dystrophic pectoral muscles levels of AChE and °ChE increase rapidly in vivo, °ChE accounting for 5–10% of total cholinesterase activity. In the normal pectoral muscle the concentration of both enzymes drops rapidly after hatching with increasing muscle mass; total AChE per muscle remains relatively constant for 30 days post-hatch. In the dystrophic pectoral muscle both AChE and °ChE accumulate after hatching, resulting in greatly elevated levels (approx 10–25-fold) of both enzymes throughout the period studied. Multiple molecular forms of AChE and °ChE are observed in the pectoral muscle by sucrose gradient centrifugation. Four principal forms are distinguished: two light (L1, L2), one medium (M), and one heavy (H2). The °ChE forms are 0.5–1.0 S units lighter than the corresponding AChE forms. L2 is the predominant light form of AChE, whereas L1 is the major light °ChE form detected. The lighter forms of AChE predominate in normal and dystrophic embryonic pectoral muscle at day 14, being replaced by the H2 form by day 19. H2 is the major °ChE form detected at day 19. After hatching, H2 AChE is the predominant form found in both of the normal muscles studied. In the dystrophic pectoral muscle, progressive accumulation of the L2 form of AChE is detected as early as day 4 post-hatch; this form eventually becomes predominant, although the heavier forms are also elevated. In PLD muscle the same phenomenon occurs, but with a slower time course. In dystrophic pectoral muscle a similar rise in the L1 form of °ChE is first observed by day 4, with heavier forms also elevated in the mature muscle. Thus the alteration in the control of these two enzymes in dystrophic fast-twitch muscles results in an accumulation of the light forms of AChE and °ChE.  相似文献   

16.
With the aim of investigating the roles of motor innervation and activity on muscle characteristics, we studied the molecular forms of acetylcholinesterase (AChE) in fast-twitch (semimembranosus accessorius; SMa) and slow-twitch (semimembranosus proprius; SMp) muscles of the rabbit. We have shown that SMa and SMp express different patterns and tissue distribution of AChE forms and that the effect of long denervation varies with age. Three principal findings concerning expression of AChE molecular forms emerge from these studies. (1) The activity of AChE and the pattern of its molecular forms are particularly altered in adult denervated SMa and SMp muscles. AChE activity increases by 10-fold in both muscles, but asymmetric forms disappear in SMa and increase by 20-fold in SMp muscles. A similar alteration of AChE is found after tenotomy of these muscles, showing that the effect of denervation may be partly due to suppression of muscle activity. (2) The different changes occurring in the composition of AChE molecular forms in adult denervated SMa and SMp muscles are consistent with fluorescent staining with anti-AChE monoclonal antibodies and with DBA or VVA lectins, which bind to AChE asymmetric, collagen-tailed forms. These lectins poorly stain denervated SMa muscle surfaces but intensely stain neuromuscular junctions and extrasynaptic areas in denervated SMp muscle. (3) In contrast with the adult, denervation of 1-day-old muscles does not markedly modify the total amount of AChE or the proportions of its molecular forms, despite dramatic effects on muscle structure. These results are supported by studies of labeling with fluorescent DBA: the lectin only slightly stains the muscle fiber surface of denervated 15-day-old SMp muscle. Taken together, these data show that denervated muscles escape physiological regulation, producing increased levels of AChE with highly variable cellular distribution and patterns of molecular forms, depending on the age of operation and on the type of muscle.  相似文献   

17.
Globular forms (G forms) of acetylcholinesterase (AChE) are formed by monomers, dimers and tetramers of the catalytic subunits (G1, G2 and G4). In this work the hydrophobic G2 and G4 AChE forms were purified to homogeneity from Discopyge electric organ and bovine caudate nucleus and studied from different points of view, including: velocity sedimentation, affinity to lectins and SDS-polyacrylamide gel electrophoresis under reducing and non-reducing conditions. The polypeptide composition of Discopyge electric organ G2 is similar to Torpedo, however the pattern of the brain G4 AChE is much complex. Under non-reducing conditions the catalytic subunit possesses a molecular weight of 65 kDa, however this value increases to 68 kDa after reduction, suggesting that intrachain-disulfide bonds are important in the folding of the catalytic subunits of the AChE. Also it was found that after mild proteolysis; the (125I)-TID-20 kDa fragment decreased its molecular weight to approximately 10 kDa with little loss of AChE activity. Finally, we suggest a model for the organization of the different domains of the hydrophobic anchor fragment of the G4 form.  相似文献   

18.
Abstract: Several monoclonal antibodies were raised against chicken acetylcholinesterase (AChE; EC 3.1.1.7). Some of these antibodies react with quail AChE but not with AChEs from nonavian vertebrates or invertebrates and not with butyrylcholinesterase. They may be classified in several mutually compatible groups, i.e., that can bind simultaneously to the monomeric form of AChE. Most antibodies recognize a peptidic domain that does not exist in mammalian AChE and that may be digested by trypsin without loss of activity or dissociation of quaternary structure. The only exception is the antibody C-131, which is conformation dependent and preferentially recognizes active AChE. We have set up two-site immunoradiometric assays, using an immobilized capture antibody, C-6 or C-131, and a radiolabeled antibody, 125I-C-54. The C-6/C-54 assay quantifies the totality of inactive and active AChE subunits: It detects 10?3 Ellman unit (~40 pg of protein) and yields a linear response up to at least 25 10?3 Ellman units. An analysis of gradient fractions, using C-6/C-54 and C-131/C-54 assays as well as activity determination, shows that the A12 and G4 forms are exclusively composed of active subunits, whereas inactive molecules cosediment with the active G2 and G1 forms. Both active and inactive G2 and G1 forms are amphiphilic, as indicated by the influence of detergents on their sedimentation coefficients and Stokes radii. In brain, the proportion of inactive forms decreases from 40% at embryonic day 11 (E11) to 20% at birth [day 1 (D1)]. In muscle, we observed no inactive AChE at E11 and a small proportion of inactive G1 at D1. The proportion of inactive forms was much higher in cultured myotubes, obtained from E11 myoblasts. These results show that the proportion of inactive AChE depends on the tissue and varies during development. Thus, the cells seem to control actively the acquisition of AChE activity, as well as the formation of the various oligomeric forms.  相似文献   

19.
Abstract: In the present paper, we report an analysis of acetylcholinesterase molecular forms in the bovine caudate nucleus and superior cervical ganglion. We show that: (1) The superior cervical ganglion contains a significant proportion (~ 15%) of collagen-tailed forms (mostly A12 and A8), but these molecules are found only as traces (ca. 0.002%) in the caudate nucleus, even in favorable extraction conditions (i.e., in the presence of 1 m -NaCl, 5 mm -EDTA, 1% Triton X-100). (2) The bulk of acetylcholinesterase corresponds to globular forms, mostly the tetrameric G4 and the monomeric G1 forms, with a smaller proportion of the dimeric G2 form. (3) The tetrameric enzyme exists as a minor soluble component (GS4) that does not interact with Triton X-100, and a major hydrophobic component (GH4) that is partially solubilized in the absence of detergent in the caudate nucleus, but not in the superior cervical ganglion. (4) The monomeric G1 form presents a marked hydrophobic character, as indicated by its interaction with Triton X-100, although it may be solubilized in large part in the absence of detergent in both tissues. (5) The detergentsolubilized forms aggregate upon removal of detergent. This property disappears after partial purification of G4) that does not interact with Triton X-100, and a major hydrophobic component (GH4, but is restored upon addition of an inactivated crude extract, indicating that it is attributable to interactions with other hydrophobic components. (6) The proportions of molecular forms solubilized in detergent-free buffers vary with the ionic composition of the medium. Repeated extractions of caudate nucleus in Tris-HCl buffer produce a larger overall yield of G1 form (e.g., 40%) than appears in a single quantitative detergent solubilization (<15%). This G1 form apparently derives in part from a pool of GH4 form. (7) However, detergents that allow a quantitative solubilization of acetylcholinesterase yield the same proportions of forms (about 85% G4) independently of the ionic conditions. (8) Modifications of the molecular forms occur spontaneously during purification, or storage of the crude aqueous ex-tracts, in a manner that depends on the ionic conditions. In Tris-HCl buffer, G1 is converted into a well-defined 7.5S form. In Ringer, polydisperse components are formed. The effects observed in Ringer cannot be reproduced by addition of 5 mm -Ca2- to the Tris buffer either during or after extraction. (9) Proteases, such as pronase, convert the hydrophobic forms into molecules that do not appear to interact with Triton X-100, and do not aggregate in its absence. These results raise fundamental questions regarding the status of acetylcholinesterase in situ, the structure and interactions of its molecular forms. They are discussed with reference to previous publications.  相似文献   

20.
Abstract: Acetylcholinesterase (AChE) was extracted in a high-saline medium from gastrocnemius muscles of rat embryos and young rats aged 14 days'gestation to 40 days post partum. The molecular forms of the enzyme were separated by low-salt precipitation, followed by velocity sedimentation. During gestation, all molecular forms increased in activity, particularly the 16 S (A12) form. During the first 2 weeks of life, there was a large increase in the activity of soluble AChE (G forms), whilst the activity of insoluble AChE (A forms) was reduced. Denervation of the muscle reversed the change in the relative proportions of the molecular forms. The embryonic pattern of activities of AChE forms persisted in cultures of myotubes obtained at 20 days'gestation and maintained in the absence of spinal cord. When myotubes were maintained in medium previously conditioned by developing spinal cord explants, 16 S AChE declined while the soluble (4 and 6 S) forms increased in activity in a manner resembling that seen in early postnatal muscles in vivo . β-Endorphin (β-EP) immunoreactivity was detected in the spinal cord-conditioned medium and was identified by HPLC and ion-exchange chromatography as β-EP-(l–31) plus its shortened and N -acetylated forms. Cultivation of myotubes in the presence of synthetic camel β-EP resulted in a reversible change in the pattern of AChE forms which was similar to that seen with spinal cord-conditioned medium. These studies provide evidence for the neuroregulation of AChE A and G forms in immature skeletal muscle. A major candidate for this role is β-EP, produced and released by developing spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号