首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proximal promoter of the C/EBPbeta gene possesses dual cis regulatory elements (TGA1 and TGA2), both of which contain core CREB binding sites. Comparison of the activities of C/EBPbeta promoter-reporter genes with 5'-truncations or site-directed mutations in the TGA elements showed that both are required for maximal promoter function. Electrophoretic mobility shift and chromatin immunoprecipitation (ChIP) analyses with antibodies specific to CREB and ATF1 showed that these CREB family members associate with the proximal promoter both in vitro and ex vivo. Immunoblotting and ChIP analysis revealed that other CREB family members, CREM and ATF1, are up-regulated and associate with the proximal C/EBPbeta promoter in mouse embryonic fibroblasts (MEFs) from CREB(-/-) mice. ChIP analysis of wild-type MEFs and 3T3-L1 preadipocytes revealed that interaction of phospho-CREB, the active form of CREB, with the C/EBPbeta gene promoter occurs only after induction of differentiation of 3T3-L1 preadipocytes and MEFs. Consistent with the interaction of CREB and ATF1 at the TGA regulatory elements, expression of constitutively active CREB strongly activated C/EBPbeta promoter-reporter genes, induced expression of endogenous C/EBPbeta, and caused adipogenesis in the absence of the hormonal inducers normally required. Conversely, expression of a dominant-negative CREB blocked promoter-reporter activity, expression of C/EBPbeta, and adipogenesis. When subjected to the standard adipocyte differentiation protocol, wild-type MEFs differentiate into adipocytes at high frequency, whereas CREB(-/-) MEFs exhibit greatly reduced expression of C/EBPbeta and differentiation. The low level of expression of C/EBPbeta and differentiation in CREB(-/-) MEFs appears to be due to up-regulation of other CREB protein family members, i.e. ATF1 and CREM.  相似文献   

2.
3.
The postnatal neocortex has traditionally been considered a non-neurogenic region, under non-pathological conditions. A few studies suggest, however, that a small subpopulation of neural cells born during postnatal life can differentiate into neurons that take up residence within the neocortex, implying that postnatal neurogenesis could occur in this region, albeit at a low level. Evidence to support this hypothesis remains controversial while the source of putative neural progenitors responsible for generating new neurons in the postnatal neocortex is unknown. Here we report the identification of self-renewing multipotent neural progenitor cells (NPCs) derived from the postnatal day 14 (PD14) marmoset monkey primary visual cortex (V1, striate cortex). While neuronal maturation within V1 is well advanced by PD14, we observed cells throughout this region that co-expressed Sox2 and Ki67, defining a population of resident proliferating progenitor cells. When cultured at low density in the presence of epidermal growth factor (EGF) and/or fibroblast growth factor 2 (FGF-2), dissociated V1 tissue gave rise to multipotent neurospheres that exhibited the ability to differentiate into neurons, oligodendrocytes and astrocytes. While the capacity to generate neurones and oligodendrocytes was not observed beyond the third passage, astrocyte-restricted neurospheres could be maintained for up to 6 passages. This study provides the first direct evidence for the existence of multipotent NPCs within the postnatal neocortex of the nonhuman primate. The potential contribution of neocortical NPCs to neural repair following injury raises exciting new possibilities for the field of regenerative medicine.  相似文献   

4.
NMDA receptor (NMDAR) stimulation promotes neuronal survival during brain development. Cerebellar granule cells (CGCs) need NMDAR stimulation to survive and develop. These neurons differentiate and mature during its migration from the external granular layer to the internal granular layer, and lack of excitatory inputs triggers their apoptotic death. It is possible to mimic this process in vitro by culturing CGCs in low KCl concentrations (5 mm) in the presence or absence of NMDA. Using this experimental approach, we have obtained whole genome expression profiles after 3 and 8 h of NMDA addition to identify genes involved in NMDA-mediated survival of CGCs. One of the identified genes was Nurr1, a member of the orphan nuclear receptor subfamily Nr4a. Our results report a direct regulation of Nurr1 by CREB after NMDAR stimulation. ChIP assay confirmed CREB binding to Nurr1 promoter, whereas CREB shRNA blocked NMDA-mediated increase in Nurr1 expression. Moreover, we show that Nurr1 is important for NMDAR survival effect. We show that Nurr1 binds to Bdnf promoter IV and that silencing Nurr1 by shRNA leads to a decrease in brain-derived neurotrophic factor (BDNF) protein levels and a reduction of NMDA neuroprotective effect. Also, we report that Nurr1 and BDNF show a similar expression pattern during postnatal cerebellar development. Thus, we conclude that Nurr1 is a downstream target of CREB and that it is responsible for the NMDA-mediated increase in BDNF, which is necessary for the NMDA-mediated prosurvival effect on neurons.  相似文献   

5.
6.
7.
8.
9.
Orosomucoid 1-like 3 (ORMDL3) gene was strongly linked with the development of asthma in genetic association studies, and its expression could be significantly induced by allergen in airway epithelial cells of mice. However, the expression mechanism of ORMDL3 was still unclear. Here we have identified and characterized the mouse ORMDL3 gene promoter. Deletion constructs of the 5′ flanking region were fused to a luciferase reporter gene. After transient transfection in mouse fibroblast cell line NIH3T3, a CRE (−27/−20) binding CREB was identified in the core promoter region. Deletion or mutation of the CRE consensus sequence resulted in a significant loss of the promoter activity. EMSA and ChIP assays demonstrated the binding of CREB to the core promoter. Knocking down endogenous CREB led to a reduction in ORMDL3 expression. Conversely, overexpression of CREB up-regulated ORMDL3 expression. Moreover, forskolin, a PKA activator, could facilitate the phosphorylation of CREB, which in turn heightens ORMDL3 expression. H-89, a PKA-specific inhibitor, could significantly inhibit ORMDL3 expression. This study delineates the characterization of mouse ORMDL3 gene promoter and shows signaling pathway cAMP/PKA/CREB plays an important role in regulating ORMDL3 expression, which will be helpful for future animal model studies regarding the regulation or function of ORMDL3 gene.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Recent studies on the human oestrogen receptor (ER) gene have revealed the complex system with the multiple untranslated first exons and promoters in the ER gene expression. Little information is however available on the system in the ER gene of the rat or nonhuman primate. The rat genomic library was first screened by the rat ER cDNA (0–1) probe. One of the four positive clones (λ rEgEl) was subcloned and sequenced. The nucleotide sequence was found to contain the exon 0, the intron 0, and the exon 1 with its 3′-ends. The novel untranslated first exons, the exon ON and the exon OS, were further identified. These results indicated the presence of at least four subtypes of the rat ER mRNAs; the messages transcribed from promoter P-0 (ER mRNA (0–1)), putative promoter P-1 (ER mRNA (1–1)), promoter P-ON (ER mRNA (ON-1)) and promoter P-OS (ER mRNA (OS-1)). The P-O- or P-1 driven message (0–1) or (1–1) appeared to be expressed most strongly in major oestrogen central- (anterior pituitary, AP, hypothalamus–preoptic area, HPOA, and amygdala, AMG) and peripheral targets (uterus and ovary). The message (ON-1) was strongly expressed in the liver and kidney, but not in the HPOA, AMG, cerebral cortex, CC, and cerebellum, Ce. The OS-1 message was expressed variably but generally in the tissues examined except for the CC and Ce. Thus, the region- and tissue specific expression of the rat ER gene is likely to be regulated by the multiple untranslated exons and promoters system. Furthermore, when the ER mRNA subtypes were examined in the rat neonatal CC where the ER protein level rose transiently, considered as a model for the development of the ER or progestin receptor A and B isoforms, the expression of the ER mRNAs seemed to be differential postnatally, implicating some stage dependent usage of the promoters in the development. In the monkey, we identified the untranslated first exon OS, the homologue of the rat exon OS. Interestingly, the exon C was found to consist of two different exons, the exon OK and the exon OG. By the alternative usage of the promoters and the alternative splicing, at least six ER mRNA subtypes, that is, ER mRNAs (0–1), (1–1), (OS-1), (OS-OG-1), (OK-1) and (OK-OG-1) were identified in the monkey tissues. These messages were also differentially distributed in the monkey brain and other tissues. It was noteworthy that the P-OK driven messages were expressed almost exclusively in the monkey liver. These results have suggested that the systems of the multiple untranslated first exons and promoters and the alternative splicing are involved in the regulation of the region- and tissue specific expression of the ER gene in the brain and peripheral tissues of the rat and monkey. Stage-related usage of the promoters was also suggested in the ER gene expression in the CC of the postnatal rat in development.  相似文献   

18.
19.
20.
During human gestation, the placental syncytiotrophoblast develops the capacity to synthesize large amounts of estrogen from C19-steroids secreted by the fetal adrenals. The conversion of C19-steroids to estrogens is catalyzed by aromatase P450 (P450arom), product of the CYP19 gene. The placenta-specific promoter of the hCYP19 gene lies 100,000 bp upstream of the translation initiation site in exon II. In studies using transgenic mice and transfected human trophoblast cells we have defined a 246-bp region upstream of placenta-specific exon I.1 that mediates placental cell-specific expression. Using transgenic mice, we also observed that as little as 278 bp of DNA flanking the 5′-end of ovary-specific hCYP19 exon IIa was sufficient to target ovary-specific expression. This ovary-specific promoter contains response elements that bind cAMP-response element-binding protein (CREB) and the orphan nuclear receptors SF-1 and LRH-1, which are required for cAMP-mediated stimulation of CYP19 expression in granulosa and luteal cells during the estrous cycle and pregnancy. In this article, we review our studies to define genomic regions and response elements that mediate placenta-specific expression of the hCYP19 gene. The temporal and spatial expression of LRH-1 versus SF-1 in the developing gonad during mouse embryogenesis and in the postnatal ovary also will be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号