首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relative cleanability of stainless steel, enamelled steel, mineral resin and polycarbonate domestic sink materials was assessed by comparing the number of organisms remaining on surfaces after cleaning. In unused condition all materials, other than one enamelled steel, were equally cleanable. Stainless steel, abraded artificially or impact damaged to a similar degree as stainless steel subjected to domestic wear, retained approximately one log order less bacteria after cleaning than the other materials subjected to the same treatments. Little difference in cleanability was recorded between the abraded surfaces of the other materials although enamelled steel surfaces were less cleanable than mineral resin or polycarbonate after impact damage, because of the greater susceptibility of enamelled steel to damage by this treatment. When cleaning time was extended beyond 10 s for the abraded and impact damaged materials, their cleanability was not enhanced as compared with stainless steel. Changes in surface finish after abrasion were assessed by surface roughness measurement and scanning electron microscopy. Surfaces with poor cleanability before and after abrasion were characterized by pitting, crevices or jags. These surfaces are likely to retain more bacteria because of increased numbers of attachment sites, a larger bacterial/material surface contact area and topographical areas in which applied cleaning shear forces are reduced. Materials that resist surface changes, e.g. stainless steel, will remain more hygienic when subjected to natural wear than materials which become more readily damaged.  相似文献   

2.
H olah , J.T. & T horpe , R.H. 1990. Cleanability in relation to bacterial retention on unused and abraded domestic sink materials. Journal of Applied Bacteriology 69 , 599–608.
The relative Cleanability of stainless steel, enamelled steel, mineral resin and polycarbonate domestic sink materials was assessed by comparing the number of organisms remaining on surfaces after cleaning. In unused condition all materials, other than one enamelled steel, were equally cleanable. Stainless steel, abraded artificially or impact damaged to a similar degree as stainless steel subjected to domestic wear, retained approximately one log order less bacteria after cleaning than the other materials subjected to the same treatments. Little difference in Cleanability was recorded between the abraded surfaces of the other materials although enamelled steel surfaces were less cleanable than mineral resin or polycarbonate after impact damage, because of the greater susceptibility of enamelled steel to damage by this treatment. When cleaning time was extended beyond 10 s for the abraded and impact damaged materials, their Cleanability was not enhanced as compared with stainless steel. Changes in surface finish after abrasion were assessed by surface roughness measurement and scanning electron microscopy. Surfaces with poor Cleanability before and after abrasion were characterized by pitting, crevices or jags. These surfaces are likely to retain more bacteria because of increased numbers of attachment sites, a larger bacterial/material surface contact area and topographical areas in which applied cleaning shear forces are reduced. Materials that resist surface changes, e.g. stainless steel, will remain more hygienic when subjected to natural wear than materials which become more readily damaged.  相似文献   

3.
A steam sterilizer (autoclave) was tested to determine the operating parameters that affected sterilization of microbiological waste. Tests involved standardized loads (5, 10 ad 15 lb [ca. 2.27, 4.54, and 6.80 kg, respectively]) contaminated petri plates in autoclave bags placed in polypropylene or stainless steel containers. Thermal and biological data were obtained by using a digital potentiometer and a biological indicator containing spores of Bacillus stearothermophilus, respectively. The transfer of heat was more efficient when smaller loads of microbiological waste were tested and stainless steel rather than polypropylene containers were used. A single bag with the sides rolled down to expose the top layer of petri plates allowed heat to pass better than did a single bag with the top constricted by a twist-tie. The presence of water in the autoclave bag did not significantly improve heat-up time in stainless steel or polypropylene containers. The results of biological tests substantiated the temperature data. When 10 or 15 lb of microbiological waste was exposed to various test conditions, the only condition that ensured the destruction of B. stearothermophilus involved the use of a stainless steel container (with or without water) for 90 min. Autoclaving for 45 min resulted in the destruction of bacteria included in 10 lb (136 +/- 3 plates) or 15 lb (205 +/- 6 plates) of microbiological waste when stainless steel containers with or without water or polypropylene containers with water used, whereas 60 min was required to kill all bacteria if polypropylene containers without water were used.  相似文献   

4.
Environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) were compared as tools for the observation of bacterial biofilms developed on carbon steel and AISI 316 stainless steel surfaces under stagnant conditions. Biofilms were generated in batch cultures of two different isolates of marine sulphate reducing bacteria (SRB) and in cultures consisting of mixed populations of acidophilic bacteria, known as "acid streamers";. Imaging of single SRB cells on mica was also carried out to reveal the surface topography of individual bacterial cells at nanometre resolution. Following the removal of biofilms, the stainless steel surfaces were profiled using AFM to determine the degree of steel deterioration. ESEM and AFM studies of bacterial biofilms in-situ, gave both qualitative and quantitative information on biofilm structure at high resolution. The use of AFM image analysis software allowed estimation of the width and height of bacterial cells, the thickness and width of exopolymeric (EPS) capsule and bacterial flagella, as well as characterisation of the surface roughness of the steel, including measurements of depth and diameter of individual pits. Exposure of stainless steel specimens to acid streamers resulted in a significant increase in the surface roughness of the steel, compared to specimens placed in sterile medium.  相似文献   

5.
Laboratory studies on adhesion of microalgae to hard substrates   总被引:1,自引:0,他引:1  
Sekar  R.  Venugopalan  V.P.  Satpathy  K.K.  Nair  K.V.K.  Rao  V.N.R. 《Hydrobiologia》2004,512(1-3):109-116
Adhesion of Chlorella vulgaris(chlorophyceae), Nitzschia amphibia(bacillariophceae) and Chroococcus minutus(cyanobacteria) to hydrophobic (perspex, titanium and stainless steel 316-L), hydrophilic (glass) and toxic (copper, aluminium brass and admiralty brass) substrata were studied in the laboratory. The influence of surface wettability, surface roughness, pH of the medium, culture age, culture density, cell viability and presence of organic and bacterial films on the adhesion of Nitzschia amphibia was also studied using titanium, stainless steel and glass surfaces. All three organisms attached more on titanium and stainless steel and less on copper and its alloys. The attachment varied significantly with respect to exposure time and different materials. The attachment was higher on rough surfaces when compared to smooth surfaces. Attachment was higher on pH 7 and above. The presence of organic film increased the attachment significantly when compared to control. The number of attached cells was found to be directly proportional to the culture density. Attachment by log phase cells was significantly higher when compared to stationary phase cells. Live cells attached more when compared to heat killed and formalin killed cells. Bacterial films of Pseudomonas putida increased the algal attachment significantly. %  相似文献   

6.
The use of an ultrasonic apparatus (40 kHz) for the non-destructive, rapid and reproducible removal of biofilm from standard materials (stainless steel and polypropylene) in a dairy factory was investigated. The application of ultrasound with the tested conditions (10 s and 40 kHz) was found not to be detrimental for standard ATP (concentration ranging between 5 x 10(-9) and 10(-5) mol 1(-1)) and for prokaryotic cells, including both rods and coccoid-shaped bacteria (Escherichia coli and Staphylococcus aureus). It allowed the use of the ATP bioluminescence measurement for quantifying the biofilm removal. The repeatability of industrial milk removal was determined on fouled stainless steel and polypropylene sheets. The variability of the results with the sonication method was constant, +/-24% (coefficient of variation) for both surfaces, and was variable with the swabbing method, +/-42% for the stainless steel sheet and +/-74% for the polypropylene sheet. The ultrasonic apparatus removed twice the amount of industrial milk biofilm compared with the swabbing method in the case of the polypropylene sheets. The apparatus was used to validate the industrial cleaning protocols of a milk factory.  相似文献   

7.
Biofouling of equipment surfaces in the food industry is due initially to physico-chemical adhesion processes, and subsequently to the proliferation of microbes within an extracellular polymer matrix. Two physico-chemical theories can be applied to predict simple cases of bacterial adhesion. However, these models are limited in their applicability owing to the complexity of bacterial surfaces and the surrounding medium. Various factors that can affect the bacterial adhesion process have been listed, all directly linked to the solid substratum, the suspension liquid or the microorganism. For stainless steel surfaces, it is important to take into account the grade of steel, the type of finish, surface roughness, the cleaning procedures used and the age of the steel. Regarding the suspension fluid within which adhesion takes place, pH, ionic composition and the presence of macromolecules are important variables. In addition, the adhering microorganisms have extremely complex surfaces and many factors must be taken into account when conducting adhesion tests, such as the presence of cell appendages, the method of culture, the contact time between the microorganism and the surface, and exopolymer synthesis. Research on biofilms growing on stainless steel has confirmed results obtained with other materials, regarding resistance to disinfectants, the role of the extracellular matrix and the process by which the biofilm forms. However, it appears that the bactericidal activity of disinfectants on biofilms differs according to the type of surface on which they are growing. The main cleaners and disinfectants used in the food industry are alkaline and acid detergents, peracetic acid, quaternary ammonium chlorides and iodophors. The cleanability and disinfectability of stainless steel surfaces have been compared with those of other materials. According to the published research findings, stainless steel is comparable in its biological cleanability to glass, and significantly better than polymers, aluminium or copper. Moreover, microorganisms in a biofilm developing on a stainless steel surface can be killed with lower concentrations of disinfectant than those on polymer surfaces.  相似文献   

8.
Targets made of ITER-grade 316L(N)-IG stainless steel and Russian-grade 12Cr18Ni10Ti stainless steel with a close composition were exposed at the QSPA-T plasma gun to plasma photonic radiation pulses simulating conditions of disruption mitigation in ITER. After a large number of pulses, modification of the stainless-steel surface was observed, such as the formation of a wavy structure, irregular roughness, and cracks on the target surface. X-ray and optic microscopic analyses of targets revealed changes in the orientation and dimensions of crystallites (grains) over a depth of up to 20 μm for 316L(N)-IG stainless steel after 200 pulses and up to 40 μm for 12Cr18Ni10Ti stainless steel after 50 pulses, which is significantly larger than the depth of the layer melted in one pulse (~10 μm). In a series of 200 tests of ITER-grade 316L(N)-IG ITER stainless steel, a linear increase in the height of irregularity (roughness) with increasing number of pulses at a rate of up to ~1 μm per pulse was observed. No alteration in the chemical composition of the stainless-steel surface in the series of tests was revealed. A model is developed that describes the formation of wavy irregularities on the melted metal surface with allowance for the nonlinear stage of instability of the melted layer with a vapor/plasma flow above it. A decisive factor in this case is the viscous flow of the melted metal from the troughs to tops of the wavy structure. The model predicts saturation of the growth of the wavy structure when its amplitude becomes comparable with its wavelength. Approaches to describing the observed stochastic relief and roughness of the stainless-steel surface formed in the series of tests are considered. The recurrence of the melting-solidification process in which mechanisms of the hill growth compete with the spreading of the material from the hills can result in the formation of a stochastic relief.  相似文献   

9.
AIMS: The aim of this study was to evaluate the respective influence of the physicochemical interactions and the roughness involved in the first part of the biological substrate biocontamination. METHODS AND RESULTS: Therefore we compared the bioadhesion results obtained on the biological model substrate (Episkin) and on a commonly employed inert substrate (AISI 304 stainless steel), frequently used either in dermatology or in development of medical devices. The two studied strains presented different characteristics, both physicochemical and microbiological. Staphylococcus epidermidis, a relatively hydrophobic bacteria capable of exchanging interactions which are principally of the van der Waals type, adhered more to 304 steel than to the surface of reconstituted skin. As for S. aureus, an essentially basic, hydrophilic bacteria, was more adherent to Episkin (a bipolar, hydrophilic substrate) than to stainless steel (a unipolar, basic, hydrophilic substrate). CONCLUSIONS: In the absence of electrostatic interactions, the adhesion of substrate-dependent bacteria to the surface of reconstituted skin was dependent upon the balance between gamma(LW), gamma(+) and gamma(-). SIGNIFICANCE AND IMPACT OF THE STUDY: Consequently, so as to restrict microbial adhesion and reduce adhesive binding between micro-organisms and the surface of the skin, it would be preferable to render this substrate hydrophobic and apolar through the use of appropriate surface treatment.  相似文献   

10.
A range of titanium doped diamond-like carbon (Ti-DLC) coatings with different Ti contents were prepared on stainless steel substrates using a plasma-enhanced chemical vapour deposition technique. It was found that both the electron donor surface energy and the surface roughness of the Ti-DLC coatings increased with increasing Ti contents in the coatings. Bacterial adhesion to the coatings was evaluated against Escherichia coli WT F1693 and Pseudomonas aeruginosa ATCC 33347. The experimental data showed that bacterial adhesion decreased with the increases of the Ti content, the electron donor surface energy and surface roughness of the coatings, while the bacterial removal percentage increased with the increases of these parameters. The Ti-DLC coatings reduced bacterial attachment by up to 75% and increased bacterial detachment from 15 to 45%, compared with stainless steel control.  相似文献   

11.
S. Pohl  M. Madzgalla  W. Manz 《Biofouling》2013,29(9-10):699-707
The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.  相似文献   

12.
This study investigated the physicochemical forces involving the adhesion of Listeria monocytogenes to surfaces. A total of 22 strains of L. monocytogenes were compared for relative surface hydrophobicity with the salt aggregation test. Cell surface charges and hydrophobicity of L. monocytogenes Scott A were also determined by electrophoretic mobility, hydrophobic-interaction chromatography, and contact angle measurements. Electrokinetic measurements indicated that the strain Scott A has a negative electrophoretic mobility. Physicochemical characterization of L. monocytogenes by various methods indicates that this microorganism is hydrophilic. All L. monocytogenes strains tested with the salt aggregation test method aggregated a at very high ammonium sulfate molarities. The hydrophobicity-interaction chromatography results show that L. monocytogenes Scott A cells do not adhere to octyl-Sepharose unless the pH is low. Results from contact angle measurements showed that the surface free energy of strain Scott A was 65.9 mJ.m-2, classifying this microorganism as a hydrophilic bacterium. In addition, the interfacial free energy of adhesion of L. monocytogenes Scott A estimated for polypropylene and rubber was lower than that for glass and stainless steel. However, these theoretical implications could not be correlated with the attachment capabilities of L. monocytogenes.  相似文献   

13.
Orthodontists, like others (Engel, P.A. (1976) Impact Wear of Materials. Elsevier Scientific, New York.), often equate the smoothness of surfaces with the absence of friction. To investigate whether the surface roughness of opposing materials influence the coefficients of friction and ultimately the movement of teeth, arch wires were slid between contact flats to simulate orthodontic arch wire-bracket appliances. From laser specular reflectance measurements, the RMS surface roughness of these arch wires varied from 0.04 microns for stainless steel to 0.23 microns for nickel titanium. Using the same technique, the roughnesses of the contact flats varied from 0.03 microns for the 1 micron lapped stainless steel, to 0.26 microns for the as-received alumina. After each of the arch wire-contact flat couples was placed in a friction tester, fifteen normal forces were systemically applied at 34 degrees C. From plots of the static and kinetic frictional forces vs the normal forces, dry coefficients of friction was obtained that were greater than those reported in the dental literature. The all-stainless steel couples had lower kinetic coefficients (0.120-0.148) than the stainless steel-polycrystalline alumina couple (0.187). When pressed against the various flats, the beta-titanium arch wire (RMS = 0.14 microns) had the highest coefficients of friction (0.445-0.658), although the nickel titanium arch wire was the roughest (RMS = 0.23 microns). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) verified that mass transfer of the beta-titanium arch wire occurred by adhesion onto the stainless steel flats or by abrasion from the sharply faceted polycrystalline alumina flats.  相似文献   

14.
The quantity of microorganisms that may be transferred to a food that comes into contact with a contaminated surface depends on the density of microorganisms on the surface and on the attachment strengths of the microorganisms on the materials. We made repeated contacts between pieces of meat and various surfaces (stainless steel and conveyor belt materials [polyvinyl chloride and polyurethane]), which were conditioned with meat exudate and then were contaminated with Listeria monocytogenes, Staphylococcus sciuri, Pseudomonas putida, or Comamonas sp. Attachment strengths were assessed by the slopes of the two-phase curves obtained by plotting the logarithm of the number of microorganisms transferred against the order number of the contact. These curves were also used to estimate the microbial population on the surface by using the equation of A. Veulemans, E. Jacqmain, and D. Jacqmain (Rev. Ferment. Ind. Aliment. 25:58-65, 1970). The biofilms were characterized according to their physicochemical surface properties and structures. Their exopolysaccharide-producing capacities were assessed from biofilms grown on polystyrene. The L. monocytogenes biofilms attached more strongly to polymers than did the other strains, and attachment strength proved to be weaker on stainless steel than on the two polymers. However, in most cases, it was the population of the biofilms that had the strongest influence on the total number of CFU detached. Although attachment strengths were weaker on stainless steel, this material, carrying a smaller population of bacteria, had a weaker contaminating capacity. In most cases the equation of Veulemans et al. revealed more bacteria than did swabbing the biofilms, and it provided a better assessment of the contaminating potential of the polymeric materials studied here.  相似文献   

15.
The relative hygienic status of 16 stainless steel surfaces, characterised by topography and surface free energy was investigated. B. thuringiensis spores suspended in Bechamel sauce was chosen as the test fouling suspension. Surface topography was assessed using 10 standardised roughness parameters, along with scanning electron microscope observations. The number of residual adhering spores after a fouling and cleaning in place procedure was found to be influenced by the topography of the stainless steel surface, but not by the surface free energy. Among the various roughness parameters, RA, RRR RPK and RVK were shown to be related to the hygienic status. Microscopic observations demonstrated the influence of the shape and size of surface irregularities on the level of residual soil after cleaning. This confirms that the use of only one roughness parameter, usually RA, is not sufficient in defining the hygienic status of stainless steel surfaces.  相似文献   

16.
The disinfecting capacity of eight commercial chemical products was evaluated by the use--dilution method given by the Associated of Official Analytical Chemists (AOAC) on three types of surface material (steel, aluminum, and plastic). For most products tested the limit concentration was 10 times higher for disinfecting aluminum and plastic surfaces than stainless steel. As observed on the scanning electron microscope, the number of bacteria deposited on the surface and the production of extracellular material on polypropylene by Pseudomonas aeruginosa ATCC 15442 would explain the observed differences. The applicability of the AOAC method or other techniques for the evaluation of the disinfecting capacity on different surfaces is discussed.  相似文献   

17.
Gubner R  Beech IB 《Biofouling》2000,15(1-3):25-36
Surfaces of AISI 304 and 316 stainless steels were pre-treated with three different types of extracellular polymeric substances, viz. (i) exopolymers released into the culture medium ("free"; or planktonic exopolymers), (ii) capsular exopolymers, and (iii) biofilm exopolymers, produced by continuous cultures of marine Pseudomonas NCIMB 2021. The initial attachment of Pseudomonas cells to exopolymer-conditioned steel surfaces varied with the exopolymer type and concentration. Results gained from wettability studies of exopolymer-treated steel using contact angle measurements, as well as from the surface roughness measurements conducted employing atomic force microscopy analysis, could not account for the observed, statistically significant differences (p < 0.1) in the level of bacterial surface colonisation. It is therefore proposed that neither surface hydrophobicity nor roughness play an important part in the early attachment of Pseudomonas NCIMB 2021 to the conditioned steel surfaces and that a difference in the chemistry of the exopolymers is most likely a key parameter influencing initial cell adhesion to pre-treated steel.  相似文献   

18.
The quantity of microorganisms that may be transferred to a food that comes into contact with a contaminated surface depends on the density of microorganisms on the surface and on the attachment strengths of the microorganisms on the materials. We made repeated contacts between pieces of meat and various surfaces (stainless steel and conveyor belt materials [polyvinyl chloride and polyurethane]), which were conditioned with meat exudate and then were contaminated with Listeria monocytogenes, Staphylococcus sciuri, Pseudomonas putida, or Comamonas sp. Attachment strengths were assessed by the slopes of the two-phase curves obtained by plotting the logarithm of the number of microorganisms transferred against the order number of the contact. These curves were also used to estimate the microbial population on the surface by using the equation of A. Veulemans, E. Jacqmain, and D. Jacqmain (Rev. Ferment. Ind. Aliment. 25:58-65, 1970). The biofilms were characterized according to their physicochemical surface properties and structures. Their exopolysaccharide-producing capacities were assessed from biofilms grown on polystyrene. The L. monocytogenes biofilms attached more strongly to polymers than did the other strains, and attachment strength proved to be weaker on stainless steel than on the two polymers. However, in most cases, it was the population of the biofilms that had the strongest influence on the total number of CFU detached. Although attachment strengths were weaker on stainless steel, this material, carrying a smaller population of bacteria, had a weaker contaminating capacity. In most cases the equation of Veulemans et al. revealed more bacteria than did swabbing the biofilms, and it provided a better assessment of the contaminating potential of the polymeric materials studied here.  相似文献   

19.
This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the freezing rate.  相似文献   

20.
Aims:  To investigate the effect of the biosurfactants surfactin and rhamnolipids on the adhesion of the food pathogens Listeria monocytogenes , Enterobacter sakazakii and Salmonella Enteritidis to stainless steel and polypropylene surfaces.
Methods and Results:  Quantification of bacterial adhesion was performed using the crystal violet staining technique. Preconditioning of surfaces with surfactin caused a reduction on the number of adhered cells of Ent. sakazakii and L. monocytogenes on stainless steel. The most significant result was obtained with L. monocytogenes where number of adhered cells was reduced by 102 CFU cm−2. On polypropylene, surfactin showed a significant decrease on the adhesion of all strains. The adsorption of surfactin on polystyrene also reduces the adhesion of L. monocytogenes and Salm. Enteritidis growing cells. For short contact periods using nongrowing cells or longer contact periods with growing cells, surfactin was able to delay bacterial adhesion.
Conclusions:  The prior adsorption of surfactin to solid surfaces contributes on reducing colonization of the pathogenic bacteria.
Significance and Impact of the Study:  This is the first work investigating the effect of surfactin on the adhesion of the food pathogens L. monocytogenes , Ent. sakazakii and Salm. Enteritidis to polypropylene and stainless steel surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号