首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
At sites of vascular injury, von Willebrand factor (VWF) mediates platelet adhesion through binding to platelet glycoprotein Ib (GPIb). Previous studies identified clusters of charged residues within VWF domain A1 that were involved in binding GPIb or botrocetin. The contribution of 28 specific residues within these clusters was analyzed by mutating single amino acids to alanine. Binding to a panel of six conformation-dependent monoclonal antibodies was decreased by mutations at Asp(514), Asp(520), Arg(552), and Arg(611) (numbered from the N-terminal Ser of the mature processed VWF), suggesting that these residues are necessary for domain A1 folding. Binding of (125)I-botrocetin was decreased by mutations at Arg(629), Arg(632), Arg(636), and Lys(667). Ristocetin-induced and botrocetin-induced binding to GPIb both were decreased by mutations at Lys(599), Arg(629), and Arg(632); among this group the K599A mutant was unique because (125)I-botrocetin binding was normal, suggesting that Lys(599) interacts directly with GPIb. Ristocetin and botrocetin actions on VWF were dissociated readily by mutagenesis. Ristocetin-induced binding to GPIb was reduced selectively by substitutions at positions Lys(534), Arg(571), Lys(572), Glu(596), Glu(613), Arg(616), Glu(626), and Lys(642), whereas botrocetin-induced binding to GPIb was decreased selectively by mutations at Arg(636) and Lys(667). The binding of monoclonal antibody B724 involved Lys(660) and Arg(663), and this antibody inhibits (125)I-botrocetin binding to VWF. The crystal structure of the A1 domain suggests that the botrocetin-binding site overlaps the monoclonal antibody B724 epitope on helix 5 and spans helices 4 and 5. The binding of botrocetin also activates the nearby VWF-binding site for GPIb that involves Lys(599) on helix 3.  相似文献   

2.
In vitro platelet glycoprotein Ib (GPIb) binding of the human von Willebrand factor (VWF) increases markedly by exogenous modulators such as ristocetin or botrocetin, and the binding does not occur in normal circulation. GPIb binding sites have been assigned in the VWF A1 domain, which consists of a disulfide loop Cys1272(509)-Cys1458(695) where amino acid residues are numbered from the starting methionine as +1. The previous numbering from the N-terminal Ser of the mature processed VWF is indicated in parentheses. In contrast, several gain-of-function mutations have been found in two regions comprised of the disulfide loop and its N- and C-terminal flanking regions. In this study, Cys1222(459)-Tyr1271(508), Gln1238(475)-Tyr1271(508), Glu1260(497)-Tyr1271(508), and Asp1459(696)-Asp1472(709) were sequentially deleted of full-length multimeric recombinant VWF. Deletions at either side resulted in normal GPIb binding, indicating that the flanking regions are not GPIb binding sites. However, the addition of a mutation at Arg1308(545) on each deletion mutant resulted in spontaneous GPIb binding without requiring modulators, suggesting that both regions are important for the inhibition of GPIb binding. Spontaneous binding was completely inhibited by monoclonal antibodies that recognize the GPIb binding sites. Interestingly, mutant proteins with N-terminal but not C-terminal deletions lost binding to monoclonal antibodies B328, B710, and 23C7, which selectively inhibit ristocetin-induced GPI binding. Their epitopes were found at His1268(505) or Asp1269(506). The crystallographic structure of the A1 domain suggests that GPIb binding is influenced by the molecular interface between the two regions and that the antibody binding to the interface inhibits binding.  相似文献   

3.
Glycoprotein (GP) Ib-IX-V binds von Willebrand factor (VWF), initiating thrombosis at high shear stress. The VWF-A1 domain binds the N-terminal domain of GPIbalpha (His1-Glu282); this region contains seven leucine-rich repeats (LRR) plus N- and C-terminal flanking sequences and an anionic sequence containing three sulfated tyrosines. Our previous analysis of canine/human and human/canine chimeras of GPIbalpha expressed on Chinese hamster ovary (CHO) cells demonstrated that LRR2-4 (Leu60-Glu128) were crucial for GPIbalpha-dependent adhesion to VWF. Paradoxically, co-crystal structures of the GPIbalpha N-terminal domain and GPIbalpha-binding VWF-A1 under static conditions revealed that the LRR2-4 sequence made minimal contact with VWF-A1. To resolve the specific functional role of LRR2-4, we compared wild-type human GPIbalpha with human GPIbalpha containing a homology domain swap of canine for human sequence within Leu60-Glu128 and a reverse swap (canine GPIbalpha with human Leu60-Glu128) for the ability to support adhesion to VWF under flow. Binding of conformation-specific anti-GPIbalpha antibodies and VWF binding in the presence of botrocetin (which does not discriminate between species) confirmed equivalent expression of wild-type and mutant receptors in a functional form competent to bind ligand. Compared with CHO cells expressing wild-type GPIbalpha, cells expressing GPIbalpha, where human Leu60-Glu128 sequence was replaced by canine sequence, supported adhesion to VWF at low shear rates but became increasingly ineffective as shear increased from 50 to 2000 s(-1). Together, these data demonstrate that LRR2-4, encompassing a pronounced negative charge patch on human GPIbalpha, is essential for GPIbalpha.VWF-dependent adhesion as hydrodynamic shear increases.  相似文献   

4.
We investigated the crucial hemostatic interaction between von Willebrand factor (VWF) and platelet glycoprotein (GP) Ibalpha. Recombinant VWF A1 domain (residues Glu(497)-Pro(705) of VWF) bound stoichiometrically to a GPIbalpha-calmodulin fusion protein (residues His(1)-Val(289) of GPIbalpha; GPIbalpha-CaM) immobilized on W-7-agarose with a K(d) of 3.3 microM. The variant VWF A1(R545A) bound to GPIbalpha-CaM 20-fold more tightly, mainly because the association rate constant k(on) increased from 1,100 to 8,800 M(-1) s(-1). The GPIbalpha mutations G233V and M239V cause platelet-type pseudo-von Willebrand disease, and VWF A1 bound to GPIbalpha(G233V)-CaM and GPIbalpha(M239V)-CaM with a K(d) of 1.0 and 0.63 microM, respectively. The increased affinity of VWF A1 for GPIbalpha(M239V)-CaM was explained by an increase in k(on) to 4,500 M(-1) s(-1). GPIbalpha-CaM bound with similar affinity to recombinant VWF A1, to multimeric plasma VWF, and to a fragment of dispase-digested plasma VWF (residues Leu(480)/Val(481)-Gly(718)). VWF A1 and A1(R545A) bound to platelets with affinities and rate constants similar to those for binding to GPIbalpha-CaM, and botrocetin had the expected positively cooperative effect on the binding of VWF A1 to GPIbalpha-CaM. Therefore, allosteric regulation by botrocetin of VWF A1 binding to GPIbalpha, and the increased binding affinity caused by mutations in VWF or GPIbalpha, are reproduced by isolated structural domains. The substantial increase in k(on) caused by mutations in either A1 or GPIbalpha suggests that productive interaction requires rate-limiting conformational changes in both binding sites. The exceptionally slow k(on) and k(off) provide important new constraints on models for rapid platelet tethering at high wall shear rates.  相似文献   

5.
Soluble von Willebrand factor (VWF) has a low affinity for platelet glycoprotein (GP) Ibalpha and needs immobilization and/or high shear stress to enable binding of its A1 domain to the receptor. The previously described anti-VWF monoclonal antibody 1C1E7 enhances VWF/GPIbalpha binding and recognizes an epitope in the amino acids 764-1035 region in the N-terminal D'D3 domains. In this study we demonstrated that the D'D3 region negatively modulates the VWF/GPIb-IX-V interaction; (i) deletion of the D'D3 region in VWF augmented binding to GPIbalpha, suggesting an inhibitory role for this region, (ii) the isolated D'D3 region inhibited the GPIbalpha interaction of a VWF deletion mutant lacking this region, indicating that intramolecular interactions limit the accessibility of the A1 domain, (iii) using a panel of anti-VWF monoclonal antibodies, we next showed that the D'D3 region is in close proximity with the A1 domain in soluble VWF but not when VWF was immobilized; (iv) destroying the epitope of 1C1E7 resulted in a mutant VWF with an increased affinity for GPIbalpha. Our results support a model of domain translocation in VWF that allows interaction with GPIbalpha. The suggested shielding interaction of the A1 domain by the D'D3 region then becomes disrupted by VWF immobilization.  相似文献   

6.
Deuterolysin (EC 3.4.24.39; formerly designated as neutral proteinase II) from Aspergillus oryzae, which contains 1 g atom of zinc/mol of enzyme, is a single chain of 177 amino acid residues, includes three disulfide bonds, and has a molecular mass of 19,018 Da. Active-site determination of the recombinant enzyme expressed in Escherichia coli was performed by site-directed mutagenesis. Substitutions of His(128) and His(132) with Arg, of Glu(129) with Gln or Asp, of Asp(143) with Asn or Glu, of Asp(164) with Asn, and of Tyr(106) with Phe resulted in almost complete loss of the activity of the mutant enzymes. It can be concluded that His(128), His(132), and Asp(164) provide the Zn(2+) ligands of the enzyme according to a (65)Zn binding assay. Based on site-directed mutagenesis experiments, it was demonstrated that the three essential amino acid residues Glu(129), Asp(143), and Tyr(106) are catalytically crucial residues in the enzyme. Glu(129) may be implicated in a central role in the catalytic function. We conclude that deuterolysin is a member of a family of Zn(2+) metalloendopeptidases with a new zinc-binding motif, aspzincin, defined by the "HEXXH + D" motif and an aspartic acid as the third zinc ligand.  相似文献   

7.
Rusticyanin (RCy) mediated transfer of electron to Cytochrome C(4) (Cytc(4)) from the extracellular Fe(+2) ion is primarily involved in the Thiobacillus ferrooxidans induced bio-leaching of pyrite ore and also in the metabolism of this acidophilic bacteria. The modeling studies have revealed the two possible mode of RCy-Cytc(4) complexation involving nearly the same stabilization energy approximately -15 x 10(3) kJ/mol, one through N-terminal Asp 15 and another -C terminal Glu 121 of Cytc(4) with the Cu-bonded His 143 of RCy. The Asp 15:His 143 associated complex (DH) of Cytc(4)-RCy was stabilized by the intermolecular H-bonds of the carboxyl oxygen atoms O(delta1) and O(delta2) of Asp 15 with the Nepsilon-atom of His 143 and O(b) atoms of Ala 8 and Asp 5 (of Cytc(4)) with the Thr 146 and Phe 51 (of RCy). But the other Glu 121:His 143 associated complex (EH) of Cytc(4)-RCy was stabilized by the H-bonding interaction of the oxygen atoms O(epsilon1) and O(epsilon2) of Glu 121 with the Nepsilon and Ogamma atoms of His 143 and Thr 146 of RCy. The six water molecules were present in the binding region of the two proteins in the energy minimized autosolvated DH and EH-complexes. The MD studies also revealed the presence of six interacting water molecules at the binding region between the two proteins in both the complexes. Several residues Gly 82 and 84, His 143 (RCy) were participated through the water mediated (W 389, W 430, W 413, W 431, W 373, and W 478) interaction with the Asp 15, Ile 82, and 62, Tyr 63 (Cytc(4)) in DH complex, whereas in EH complex the Phe 51, Asn 80, Tyr 146 (RCy) residues were observed to interact with Asn 108, Met 120, Glu 121 (of Cytc(4)) through the water molecules W 507, W 445, W 401, W 446, and W 440. The direct water mediated (W 478) interaction of His 143 (RCy) to Asp 15 (of Cytc(4)) was observed only in the DH complex but not in EH. These direct and water mediated H-bonding between the two respective proteins and the binding free energy with higher interacting buried surface area of the DH complex compare to other EH complex have indicated an alternative possibility of the electron transfer route through the interaction of His 143 of RCy and the N-terminal Asp 15 of Cytc(4).  相似文献   

8.
Rai V  Gaur M  Shukla S  Shukla S  Ambudkar SV  Komath SS  Prasad R 《Biochemistry》2006,45(49):14726-14739
The Walker A and B motifs of nucleotide binding domains (NBDs) of Cdr1p though almost identical to all ABC transporters, has unique substitutions. We have shown in the past that Trp326 of Walker B and Cys193 of Walker A motifs of N-terminal NBD of Cdr1p have distinct roles in ATP binding and hydrolysis, respectively. In the present study, we have examined the role of a well conserved Asp327 in the Walker B motif of the N-terminal NBD, which is preceded (Trp326) and followed (Asn328) by atypical amino acid substitutions and compared it with its equivalent well conserved Asp1026 of the C-terminal NBD of Cdr1p. We observed that the removal of the negative charge by D327N, D327A, D1026N, D1026A, and D327N/D1026N substitutions, resulted in Cdr1p mutant variants that were severely impaired in ATPase activity and drug efflux. Importantly, all of the mutant variants showed characteristics similar to those of the wild type with respect to cell surface expression and photoaffinity drug analogue [125I] IAAP and [3H] azidopine labeling. Although the Cdr1p D327N mutant variant showed comparable binding with [alpha-32P] 8-azido ATP, Cdr1p D1026N and Cdr1p D327N/D1026N mutant variants were crippled in nucleotide binding. That the two conserved carboxylate residues Asp327 and Asp1026 are functionally different was further evident from the pH profile of ATPase activity. The Cdr1p D327N mutant variant showed approximately 40% enhancement of its residual ATPase activity at acidic pH, whereas no such pH effect was seen with the Cdr1p D1026N mutant variant. Our experimental data suggest that Asp327 of N-terminal NBD has acquired a new role to act as a catalytic base in ATP hydrolysis, a role normally conserved for Glu present adjacent to the conserved Asp in the Walker B motif of all the non-fungal transporters.  相似文献   

9.
N-terminal His-tagged recombinant beta-1,4-galactosyltransferase from Neisseria meningitidis was expressed and purified to homogeneity by column chromatography using Ni-NTA resin. Mutations were introduced to investigate the roles of, Ser68, His69, Glu88, Asp90, and Tyr156, which are components of a highly conserved region in recombinant beta-1,4 galactosyltransferase. Also, the functions of three other cysteine residues, Cys65, Cys139, and Cys205, were investigated using site-directed mutagenesis to determine the location of the disulfide bond and the role of the sulfhydryl groups. Purified mutant galactosyltransferases, His69Phe, Glu88Gln and Asp90Asn completely shut down wild-type galactosyltransferase activity (1-3 %). Also, Ser68Ala showed much lower activity than wild-type galactosyltransferase (19 %). However, only the substitution of Tyr156Phe resulted in a slight reduction in galactosyltransferase activity (90 %). The enzyme was found to remain active when the cysteine residues at positions 139 and 205 were replaced separately with serine. However, enzyme reactivity was found to be markedly reduced when Cys65 was replaced with serine (27 %). These results indicate that conserved amino acids such as Cys65, Ser68, His69, Glu88, and Asp90 may be involved in the binding of substrates or in the catalysis of the galactosyltransferase reaction.  相似文献   

10.
Src Homology (SH2) domains play critical roles in signaling pathways by binding to phosphotyrosine (pTyr)-containing sequences, thereby recruiting SH2 domain-containing proteins to tyrosine-phosphorylated sites on receptor molecules. Investigations of the peptide binding specificity of the SH2 domain of the Src kinase (Src SH2 domain) have defined the EEI motif C-terminal to the phosphotyrosine as the preferential binding sequence. A subsequent study that probed the importance of eight specificity-determining residues of the Src SH2 domain found two residues which when mutated to Ala had significant effects on binding: Tyr beta D5 and Lys beta D3. The mutation of Lys beta D3 to Ala was particularly intriguing, since a Glu to Ala mutation at the first (+1) position of the EEI motif (the residue interacting with Lys beta D3) did not significantly affect binding. Hence, the interaction between Lys beta D3 and +1 Glu is energetically coupled. This study is focused on the dissection of the energetic coupling observed across the SH2 domain-phosphopeptide interface at and around the +1 position of the peptide. It was found that three residues of the SH2 domain, Lys beta D3, Asp beta C8 and AspCD2 (altogether forming the so-called +1 binding region) contribute to the selection of Glu at the +1 position of the ligand. A double (Asp beta C8Ala, AspCD2Ala) mutant does not exhibit energetic coupling between Lys beta D3 and +1 Glu, and binds to the pYEEI sequence 0.3 kcal/mol tighter than the wild-type Src SH2 domain. These results suggest that Lys beta D3 in the double mutant is now free to interact with the +1 Glu and that the role of Lys beta D3 in the wild-type is to neutralize the acidic patch formed by Asp beta C8 and AspCD2 rather than specifically select for a Glu at the +1 position as it had been hypothesized previously. A triple mutant (Lys beta D3Ala, Asp beta C8Ala, AspCD2Ala) has reduced binding affinity compared to the double (Asp beta C8Ala, AspCD2Ala) mutant, yet binds the pYEEI peptide as well as the wild-type Src SH2 domain. The structural basis for such high affinity interaction was investigated crystallographically by determining the structure of the triple (Lys beta D3Ala, Asp beta C8Ala, AspCD2Ala) mutant bound to the octapeptide PQpYEEIPI (where pY indicates a phosphotyrosine). This structure reveals for the first time contacts between the SH2 domain and the -1 and -2 positions of the peptide (i.e. the two residues N-terminal to pY). Thus, unexpectedly, mutations in the +1 binding region affect binding of other regions of the peptide. Such additional contacts may account for the high affinity interaction of the triple mutant for the pYEEI-containing peptide.  相似文献   

11.
The monoclonal antibody 6B4 has a potent antithrombotic effect in nonhuman primates by binding to the flexible loop, also known as the beta-switch region (amino acids 230-242), of glycoprotein Ibalpha (GPIbalpha). This interaction blocks, in high shear stress conditions, the specific interaction between GPIbalpha and von Willebrand factor suppressing platelet deposition to the damaged vessel wall, a key event in the pathogenesis of arterial thrombosis. To understand the interactions between this antibody and its antigen at the amino acid level, we here report the identification of the paratope and epitope in 6B4 and GPIbalpha, respectively, by using computer modeling and site-directed mutagenesis. The docking programs ZDOCK (rigid body docking) and HADDOCK (flexible docking) were used to model the interaction of 6B4 with GPIbalpha and to delineate the respective paratope and epitope. 6B4 and GPIbalpha mutants were constructed and assayed for their capacity to bind GPIbalpha and 6B4, respectively. From these data, it is found that the paratope of 6B4 is mainly formed by five residues: Tyr(27D), Lys(27E), Asp(28), and Glu(93) located in light chain CDR1 and -3, respectively, and Tyr(100C) of the heavy chain CDR3. These residues form a valley, where the GPIbalpha flexible loop can bind via residues Asp(235) and Lys(237). The experimental results were finally used to build a more accurate docking model. Taken together, this information provides guidelines for the design of new derivatized lead compounds with antithrombotic properties.  相似文献   

12.
Mutation of Asp(2.61(98)) at the extracellular boundary of transmembrane helix 2 of the gonadotropin-releasing hormone (GnRH) receptor decreased the affinity for GnRH. Using site-directed mutagenesis, ligand modification, and computational modeling, different side chain interactions of Asp(2.61(98)) that contribute to high-affinity binding were investigated. The conservative Asp(2. 61(98))Glu mutation markedly decreased the affinity for a series of GnRH analogues containing the native His(2) residue. This mutant showed smaller decreases in affinity for His(2)-substituted ligands. The loss of preference for His(2)-containing ligands in the mutant receptor shows that Asp(2.61(98)) determines the specificity for His(2). Analysis of the affinities of a series of position 2-substituted ligands suggests that a hydrogen bond forms between Asp(2.61(98)) and the delta NH group of His(2) and that Asp(2. 61(98)) forms a second hydrogen bond with the ligand. Substitution of Asp(2.61(98)) with an uncharged residue further decreased the affinity for all ligands and also decreased receptor expression. Computational modeling indicates an intramolecular ionic interaction of Asp(2.61(98)) with Lys(3.32(121)) in transmembrane helix 3. The uncharged, Lys(3.32(121))Gln mutation also markedly decreased agonist affinity. The modeling and the similar phenotypes of mutants with uncharged substitutions for Asp(2.61(98)) or Lys(3.32(121)) are consistent with the presence of this helix 2-helix 3 interaction. These studies support a dual role for Asp(2.61(98)): formation of an interhelical interaction with Lys(3.32(121)) that contributes to the structure of the agonist binding pocket and an interaction with His(2) of GnRH that helps stabilize agonist complexing.  相似文献   

13.
Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyses the reversible metal-dependent formation of oxaloacetate (OAA) and ATP from PEP, ADP and CO(2). Mutations of PEP carboxykinase have been constructed where the residues His(225) and Asp(263), two residues of the enzyme's putative Mn(2+) binding site, were altered. Kinetic studies of the His225Glu, and Asp263Glu PEP carboxykinases show 600- and 16,800-fold reductions in V(max) relative to the wild-type enzyme, respectively, with minor alterations in K(m) for Mn(2+). Molecular modeling of wild-type and mutant enzymes suggests that the lower catalytic efficiency of the Asp263Glu enzyme could be explained by a movement of the lateral chain of Lys(248), a critical catalytic residue, away from the reaction center. The effect on catalysis of introducing a negatively charged oxygen atom in place of N(epsilon-2) at position 225 is discussed in terms of altered binding energy of the intermediate enolpyruvate.  相似文献   

14.
Sun W  Nicholson AW 《Biochemistry》2001,40(16):5102-5110
Escherichia coli ribonuclease III (EC 3.1.24) is a double-strand- (ds-) specific endoribonuclease involved in the maturation and decay of cellular, phage, and plasmid RNAs. RNase III is a homodimer and requires Mg(2+) to hydrolyze phosphodiesters. The RNase III polypeptide contains an N-terminal catalytic (nuclease) domain which exhibits eight highly conserved acidic residues, at least one of which (Glu117) is important for phosphodiester hydrolysis but not for substrate binding [Li and Nicholson (1996) EMBO J. 15, 1421-1433]. To determine the side chain requirements for activity, Glu117 was changed to glutamine or aspartic acid. The mutant proteins were purified as (His)(6)-tagged species, and both exhibited normal homodimeric behavior as shown by chemical cross-linking. The Glu117Gln mutant is unable to cleave substrate in vitro under all tested conditions but can bind substrate. The Glu117Asp mutant also is defective in cleavage while able to bind substrate. However, low level activity is observed at extended reaction times and high enzyme concentrations, with an estimated catalytic efficiency approximately 15 000-fold lower than that of RNase III. The activity of the Glu117Asp mutant but not that of the Glu117Gln mutant can be greatly enhanced by substituting Mn(2+) for Mg(2+), with the catalytic efficiency of the Glu117Asp-Mn(2+) holoenzyme approximately 400-fold lower than that of the RNase III-Mn(2+) holoenzyme. For RNase III, a Mn(2+) concentration of 1 mM provides optimal activity, while concentrations >5 mM are inhibitory. In contrast, the Glu117Asp mutant is not inhibited by high concentrations of Mn(2+). Finally, high concentrations of Mg(2+) do not inhibit RNase III nor relieve the Mn(2+)-dependent inhibition. In summary, these experiments establish the stringent functional requirement for a precisely positioned carboxylic acid group at position 117 and reveal two classes of divalent metal ion binding sites on RNase III. One site binds either Mg(2+) or Mn(2+) and supports catalysis, while the other site is specific for Mn(2+) and confers inhibition. Glu117 is important for the function of both sites. The implications of these findings on the RNase III catalytic mechanism are discussed.  相似文献   

15.
16.
The lutropin (LH), follitropin, and thyrotropin receptors belong to the superfamily of G-protein coupled receptors and have some unique structural features. These glycoprotein hormone receptors comprise a C-terminal half and an N-terminal half of similar size. The C-terminal half is equivalent to the entire structure of other G-protein coupled receptors and has seven transmembrane domains, three cytoplasmic loops, three exoplasmic loops, and a C terminus. In contrast, the hydrophilic N-terminal half is exoplasmic and unique to the glycoprotein hormone receptors. This large N-terminal half of the LH receptor has recently been shown to be capable of binding the hormone. Therefore, these glycoprotein hormone receptors are structurally and functionally different from other G-protein coupled receptors. In an attempt to define the role of the membrane-associated C-terminal half of the LH receptor, we have prepared several mutant receptors in which an Asp or Glu in the seven transmembrane domains has been converted to Asn or Gln, respectively. These include Asp383----Asn in the second transmembrane domain, Glu410----Gln in the third transmembrane domain, and Asp556----Asn in the sixth transmembrane domain. All these mutant receptors were successfully expressed in Cos 7A cells. The Glu410----Gln and Asp556----Asn mutants maintained normal affinities for hormone binding and cAMP production, but the Asp383----Asn mutant showed significantly lower affinities. Although Asp383 of the LH receptor is conserved in all G-protein coupled receptors cloned to date except the substance P receptor, which has Glu in the place of the Asp residue, this is the first observation of the critical role of the Asp in hormone binding and subsequent stimulation of cAMP production.  相似文献   

17.
The importance of two putative Zn2+-binding (Asp347, Glu429) and two catalytic (Arg431, Lys354) residues in the tomato leucine aminopeptidase (LAP-A) function was tested. The impact of substitutions at these positions, corresponding to the bovine LAP residues Asp255, Glu334, Arg336, and Lys262, was evaluated in His6-LAP-A fusion proteins expressed in Escherichia coli. Sixty-five percent of the mutant His6-LAP-A proteins were unstable or had complete or partial defects in hexamer assembly or stability. The activity of hexameric His6-LAP-As on Xaa-Leu and Leu-Xaa dipeptides was tested. Most substitutions of Lys354 (a catalytic residue) resulted in His6-LAP-As that cleaved dipeptides at slower rates. The Glu429 mutants (a Zn2+-binding residue) had more diverse phenotypes. Some mutations abolished activity and others retained partial or complete activity. The E429D His6-LAP-A enzyme had Km and kcat values similar to the wild-type His6-LAP-A. One catalytic (Arg431) and one Zn-binding (Asp347) residue were essential for His6-LAP-A activity, as most R431 and D347 mutant His6-LAP-As did not hydrolyze dipeptides. The R431K His6-LAP-A that retained the positive charge had partial activity as reflected in the 4.8-fold decrease in kcat. Surprisingly, while the D347E mutant (that retained a negative charge at position 347) was inactive, the D347R mutant that introduced a positive charge retained partial activity. A model to explain these data is proposed.  相似文献   

18.
Clostridium paraputrificum M-21 beta-N-acetylglucosaminidase 3A (Nag3A) is an enzyme classified in family 3 of the glycoside hydrolases. To identify catalytic residues of this enzyme, mutations were introduced into highly conserved Glu and Asp residues. Replacement of Asp175 with Ala abolished the catalytic activity without change in the circular dichroism spectrum, strongly suggesting that this residue is a catalytic residue, a nucleophile/base or a proton donor. Since the K(m) values of mutant enzymes D119N, D229N, D229A and D274N increased 17 to 41 times as compared with that of wild-type enzyme, Asp119, Asp229, and Asp274 appear to be involved in substrate recognition and binding. Taking previous studies into consideration, we presume that Asp303 is the catalytic nucleophile and Asp175 is the proton donor of C. paraputrificum Nag3A.  相似文献   

19.
The large multimeric glycoprotein von Willebrand Factor (VWF) plays a pivotal adhesive role during primary hemostasis. VWF is cleaved by the protease ADAMTS13 as a down-regulatory mechanism to prevent excessive VWF-mediated platelet aggregation. For each VWF monomer, the ADAMTS13 cleavage site is located deeply buried inside the VWF A2 domain. External forces in vivo or denaturants in vitro trigger the unfolding of this domain, thereby leaving the cleavage site solvent-exposed and ready for cleavage. Mutations in the VWF A2 domain, facilitating the cleavage process, cause a distinct form of von Willebrand disease (VWD), VWD type 2A. In particular, the VWD type 2A Gly1629Glu mutation drastically accelerates the proteolytic cleavage activity, even in the absence of forces or denaturants. However, the effect of this mutation has not yet been quantified, in terms of kinetics or thermodynamics, nor has the underlying molecular mechanism been revealed. In this study, we addressed these questions by using fluorescence correlation spectroscopy, molecular dynamics simulations, and free energy calculations. The measured enzyme kinetics revealed a 20-fold increase in the cleavage rate for the Gly1629Glu mutant compared with the wild-type VWF. Cleavage was found cooperative with a cooperativity coefficient n = 2.3, suggesting that the mutant VWF gives access to multiple cleavage sites of the VWF multimer at the same time. According to our simulations and free energy calculations, the Gly1629Glu mutation causes structural perturbation in the A2 domain and thereby destabilizes the domain by ~10 kJ/mol, promoting its unfolding. Taken together, the enhanced proteolytic activity of Gly1629Glu can be readily explained by an increased availability of the ADAMTS13 cleavage site through A2-domain-fold thermodynamic destabilization. Our study puts forward the Gly1629Glu mutant as a very efficient enzyme substrate for ADAMTS13 activity assays.  相似文献   

20.
The multimeric glycoprotein von Willebrand factor (VWF) mediates platelet adhesion to collagen at sites of vascular damage. The binding site for collagen types I and III is located in the VWF-A3 domain. Recently, we showed that His(1023), located near the edge between the "front" and "bottom" faces of A3, is critical for collagen binding (Romijn, R. A., Bouma, B., Wuyster, W., Gros, P., Kroon, J., Sixma, J. J., and Huizinga, E. G. (2001) J. Biol. Chem. 276, 9985-9991). To map the binding site in detail, we introduced 22 point mutations in the front and bottom faces of A3. The mutants were expressed as multimeric VWF, and binding to collagen type III was evaluated in a solid-state binding assay and by surface plasmon resonance. Mutation of residues Asp(979), Ser(1020), and His(1023) nearly abolished collagen binding, whereas mutation of residues Ile(975), Thr(977), Val(997), and Glu(1001) reduced binding affinity about 10-fold. Together, these residues define a flat and rather hydrophobic collagen-binding site located at the front face of the A3 domain. The collagen-binding site of VWF-A3 is distinctly different from that of the homologous integrin alpha(2) I domain, which has a hydrophilic binding site located at the top face of the domain. Based on the surface characteristics of the collagen-binding site of A3, we propose that it interacts with collagen sequences containing positively charged and hydrophobic residues. Docking of a collagen triple helix on the binding site suggests a range of possible engagements and predicts that at most eight consecutive residues in a collagen triple helix interact with A3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号