首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteria and archaea in the dark ocean (>200 m) comprise 0.3–1.3 billion tons of actively cycled marine carbon. Many of these microorganisms have the genetic potential to fix inorganic carbon (autotrophs) or assimilate single-carbon compounds (methylotrophs). We identified the functions of autotrophic and methylotrophic microorganisms in a vent plume at Axial Seamount, where hydrothermal activity provides a biogeochemical hot spot for carbon fixation in the dark ocean. Free-living members of the SUP05/Arctic96BD-19 clade of marine gamma-proteobacterial sulfur oxidizers (GSOs) are distributed throughout the northeastern Pacific Ocean and dominated hydrothermal plume waters at Axial Seamount. Marine GSOs expressed proteins for sulfur oxidation (adenosine phosphosulfate reductase, sox (sulfur oxidizing system), dissimilatory sulfite reductase and ATP sulfurylase), carbon fixation (ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)), aerobic respiration (cytochrome c oxidase) and nitrogen regulation (PII). Methylotrophs and iron oxidizers were also active in plume waters and expressed key proteins for methane oxidation and inorganic carbon fixation (particulate methane monooxygenase/methanol dehydrogenase and RuBisCO, respectively). Proteomic data suggest that free-living sulfur oxidizers and methylotrophs are among the dominant primary producers in vent plume waters in the northeastern Pacific Ocean.  相似文献   

2.
To investigate the phylogenetic diversity of putative chemolithoautotrophs possessing the RubisCO form II gene (cbbM) in various environments, we designed a new PCR primer set targeting this gene. The primer set was designed to cover more diverse and longer sequences of cbbM genes than those reported previously. We analyzed various samples (i.e., benthic sands, basement rocks, sulfide chimneys, vent fluids and overlying bottom seawater) collected in a deep-sea hydrothermal field of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, by PCR-based analysis using the designed primer set. Most of the cbbM phylotypes recovered from the liquid samples were related to those of the SUP05 group that belongs to the Gammaproteobacteria and includes putative sulfide-oxidizing chemolithoautotrophs. In contrast, the cbbM phylotypes recovered from the solid samples were related to environmental clones with low similarity (74–90%) and not closely related to the SUP05 group (69–74%). The cbbM phylotypes recovered from the liquid samples were different from those of the solid samples. Furthermore, the cbbM phylotypes recovered from the solid samples were different from each other. Our results expand knowledge of the phylogenetic diversity and distribution of putative chemolithoautotrophs possessing RubisCO form II cbbM genes in deep-sea hydrothermal fields.  相似文献   

3.
We studied the diversity of all forms of the RuBisCO large subunit-encoding gene cbbL in three RuBisCO uncharacterized hydrothermal vent communities. This diversity included the archaeal cbbL and the forms IC and ID, which have not previously been studied in the deep-sea environment, in addition to the forms IA, IB and II. Vent plume sites were Fryer and Pika in the Mariana arc and the Suiyo Seamount, Izu-Bonin, Japan. The cbbL forms were PCR amplified from plume bulk microbial DNA and then cloned and sequenced. Archaeal cbbL was detected in the Mariana samples only. Both forms IA and II were amplified from all samples, while the form IC was amplified only from the Pika and Suiyo samples. Only the Suiyo sample showed amplification of the form ID. The form IB was not recorded in any sample. Based on rarefaction analysis, nucleotide diversity and average pairwise difference, the archaeal cbbL was the most diverse form in Mariana samples, while the bacterial form IA was the most diverse form in the Suiyo sample. Also, the Pika sample harbored the highest diversity of cbbL phylogenetic lineages. Based on pairwise reciprocal library comparisons, the Fryer and Pika archaeal cbbL libraries showed the most significant difference, while Pika and Suiyo showed the highest similarity for forms IA and II libraries. This suggested that the Fryer supported the most divergent sequences. All archaeal cbbL sequences formed unique phylogenetic lineages within the branches of anaerobic thermophilic archaea of the genera Pyrococcus, Archaeoglobus, and Methanococcus. The other cbbL forms formed novel phylogenetic clusters distinct from any recorded previously in other deep-sea habitats. This is the first evidence for the diversity of archaeal cbbL in environmental samples.  相似文献   

4.
The species diversity, phylogenetic affiliations, and physiological activity rates of carbon monoxide-oxidizing microorganisms were investigated, using new isolates from surface waters collected from the coast of New England and type strains from established collections. A direct isolation method allowed the simultaneous recovery of organisms with different growth rates and nutritional requirements and the identification of marine microorganisms that oxidize CO at an environmentally relevant concentration (42 nM CO). Isolates that oxidized CO at environmentally relevant rates (>4.5x10(-11) nmol CO oxidized cell-1 h-1) were taxonomically diverse, with representatives in the alpha and gamma subclasses of the Proteobacteria and the phylum Bacteroidetes, and represent a hitherto unreported metabolic function for several diverse microbial types. Isolates and type strains having the greatest specific rates of CO metabolism (1.1x10(-10) to 2.3x10(-10) nmol CO oxidized cell-1 h-1) belonged to the Roseobacter-associated clade (RAC) of the alpha subclass of the Proteobacteria. By using triple-labeled slide preparations, differential counts of active CO-oxidizing RAC cells, total RAC cells, and total bacterial cell counts in environmental samples were obtained. RAC organisms were a major component of total cell numbers (36%). Based on the density of active CO-oxidizing RAC cells in natural samples and RAC-specific metabolic activities determined for pure cultures, active CO-oxidizing RAC cells may contribute up to 15% of the total CO oxidation occurring in coastal waters.  相似文献   

5.
Chemoautotrophic bacteria from the SUP05 clade often dominate anoxic waters within marine oxygen minimum zones (OMZs) where they use energy gained from the oxidation of reduced sulfur to fuel carbon fixation. Some of these SUP05 bacteria are facultative aerobes that can use either nitrate or oxygen as a terminal electron acceptor making them ideally suited to thrive at the boundaries of OMZs where they experience fluctuations in dissolved oxygen (DO). SUP05 metabolism in these regions, and therefore the biogeochemical function of SUP05, depends largely on their sensitivity to oxygen. We evaluated growth and quantified differences in gene expression in Ca. T. autotrophicus strain EF1 from the SUP05 clade under high DO (22 μM), anoxic, and low DO (3.8 μM) concentrations. We show that strain EF1 cells respire oxygen and nitrate and that cells have higher growth rates, express more genes, and fix more carbon when oxygen becomes available for aerobic respiration. Evidence that facultatively aerobic SUP05 are more active and respire nitrate when oxygen becomes available at low concentrations suggests that they are an important source of nitrite across marine OMZ boundary layers.  相似文献   

6.
7.
Seasonality of Chesapeake Bay bacterioplankton species   总被引:19,自引:0,他引:19  
Bacteria, gamma-subclass of Proteobacteria, Vibrio-Photobacterium, Vibrio vulnificus, Vibrio cholerae-Vibrio mimicus, and Vibrio cincinnatiensis in water samples collected from the Choptank River in Chesapeake Bay from 15 April to 16 December 1996 were enumerated using a fluorescent oligonucleotide direct-counting (FODC) procedure. FODC results obtained using a Bacteria taxon-specific probe ranged from one-third the number of to the same number as that obtained by the acridine orange direct count (AODC) procedure. The abundance of individual taxa (per liter) ranged from 0.25 x 10(10) to 2.6 x 10(10) Bacteria, 0.32 x 10(8) to 3.1 x 10(8) gamma-Proteobacteria, 0.2 x 10(8) to 2.1 x 10(8) Vibrio-Photobacterium, 0.5 x 10(7) to 10 x 10(7) V. vulnificus, 0.2 x 10(6) to 6 x 10(6) V. cholerae-V. mimicus, and 0.5 x 10(5) to 8 x 10(5) V. cincinnatiensis. The occurrence of all taxa monitored in this study was higher in summer; however, these taxa made up a larger proportion of the Bacteria when the water temperature was low. Large fluctuations in species abundance as well as in percent composition of Vibrio-Photobacterium occurred from week to week, indicating that localized blooms of these taxa occur. The cross-Choptank River transect sample profile of V. vulnificus and V. cholerae-V. mimicus varied significantly in abundance, and trans-Choptank River transect samples revealed a patchy distribution.  相似文献   

8.
A wide variety of methods have been proposed to detect microbial activities, but most of them can be applied to limited categories of terrestrial organisms. We propose here to use phosphatase activity, which seems to be an essential catalytic activity for all the terrestrial organisms, and possibly for extraterrestrial organisms. We determined phosphatase activity in core samples, chimney samples, and sea water samples obtained in submarine hydrothermal systems located at Suiyo Seamount, Izu-Bonin Arc, and South Mariana. It was shown that phosphatase activity is one of possible biomarkers for extant life.  相似文献   

9.
The contribution of Chloroflexi-type SAR202 cells to total picoplankton and bacterial abundance and uptake of D- and L-aspartic acids (Asp) was determined in the different meso- and bathypelagic water masses of the (sub)tropical Atlantic (from 35 degrees N to 5 degrees S). Fluorescence in situ hybridization (FISH) revealed that the overall abundance of SAR202 was < or = 1 x 10(3) cells ml(-1) in subsurface waters (100 m layer), increasing in the mesopelagic zone to 3 x 10(3) cells ml(-1) and remaining fairly constant down to 4000 m depth. Overall, the percentage of total picoplankton identified as SAR202 increased from < 1% in subsurface waters to 10-20% in the bathypelagic waters. On average, members of the SAR202 cluster accounted for about 30% of the Bacteria in the bathypelagic waters, whereas in the mesopelagic and subsurface waters, SAR202 cells contributed < 5% to total bacterial abundance. The ratio of D-Asp : L-Asp uptake by the bulk picoplankton community increased from the subsurface layer (D-Asp : L-Asp uptake ratio approximately 0.03) to the deeper layers reaching a ratio of approximately 1 at 4000 m depth. Combining FISH with microautoradiography to determine the proportion of SAR202 cells taking up D-Asp versus L-Asp, we found that approximately 30% of the SAR202 cells were taking up L-Asp throughout the water column while D-Asp was essentially not taken up by SAR202. This D-Asp : L-Asp uptake pattern of SAR202 cells is in contrast to that of the bulk bacterial and crenarchaeal community in the bathypelagic ocean, both sustaining a higher fraction of D-Asp-positive cells than L-Asp-positive cells. Thus, although the Chloroflexi-type SAR202 constitutes a major bathypelagic bacterial cluster, it does not contribute to the large fraction of d-Asp utilizing prokaryotic community in the meso- and bathypelagic waters of the North Atlantic, but rather utilizes preferentially L-amino acids.  相似文献   

10.
This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5 degrees C and natural vent fluids at 7 degrees C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and gamma- and epsilon-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with "Nanoarchaeota." The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300 degrees C were affiliated with the delta-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4 degrees C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments.  相似文献   

11.
A combination of culture-dependent and culture-independent methodologies (Bacteria and Archaea 16S rRNA gene clone library analyses) was used to determine the microbial diversity present within a geographically distinct high Arctic permafrost sample. Culturable Bacteria isolates, identified by 16S rRNA gene sequencing, belonged to the phyla Firmicutes, Actinobacteria and Proteobacteria with spore-forming Firmicutes being the most abundant; the majority of the isolates (19/23) were psychrotolerant, some (11/23) were halotolerant, and three isolates grew at -5 degrees C. A Bacteria 16S rRNA gene library containing 101 clones was composed of 42 phylotypes related to diverse phylogenetic groups including the Actinobacteria, Proteobacteria, Firmicutes, Cytophaga - Flavobacteria - Bacteroides, Planctomyces and Gemmatimonadetes; the bacterial 16S rRNA gene phylotypes were dominated by Actinobacteria- and Proteobacteria-related sequences. An Archaea 16S rRNA gene clone library containing 56 clones was made up of 11 phylotypes and contained sequences related to both of the major Archaea domains (Euryarchaeota and Crenarchaeota); the majority of sequences in the Archaea library were related to halophilic Archaea. Characterization of the microbial diversity existing within permafrost environments is important as it will lead to a better understanding of how microorganisms function and survive in such extreme cryoenvironments.  相似文献   

12.
Bacteria from the uncultured SUP05/Arctic96BD-19 clade of gamma proteobacterial sulfur oxidizers (GSOs) have the genetic potential to oxidize reduced sulfur and fix carbon in the tissues of clams and mussels, in oxygen minimum zones and throughout the deep ocean (>200 m). Here, we report isolation of the first cultured representative from this GSO clade. Closely related cultures were obtained from surface waters in Puget Sound and from the deep chlorophyll maximum in the North Pacific gyre. Pure cultures grow aerobically on natural seawater media, oxidize sulfur, and reach higher final cell densities when glucose and thiosulfate are added to the media. This suggests that aerobic sulfur oxidation enhances organic carbon utilization in the oceans. The first isolate from the SUP05/Arctic96BD-19 clade was given the provisional taxonomic assignment ‘Candidatus: Thioglobus singularis'', alluding to the clade''s known role in sulfur oxidation and the isolate''s planktonic lifestyle.  相似文献   

13.
We have taxonomically and phylogenetically characterized a new aerobic bacterial strain (JF-1) that contains photosynthetic pigment-protein complexes and which was recently isolated from black smoker plume waters of the Juan de Fuca Ridge. Strain JF-1 is a gram-negative, yellow-pigmented, motile bacterium that is salt-, pH-, and thermotolerant. These properties are consistent with an oligotrophic adaptation to varied environmental conditions thought to exist around deep-sea hydrothermal vents. The analysis of 16S rDNA sequences revealed that strain JF-1 forms a separate phylogenetic branch between the genus Erythromonas and the Erythromicrobium-Porphyrobacter-Erythrobacter cluster within the alpha subclass of the Proteobacteria. The taxonomic name Citromicrobium bathyomarinum (gen. nov., sp. nov.) is proposed for strain JF-1.  相似文献   

14.
We sought to determine whether ingestion of a between-meal supplement containing 30 g of carbohydrate and 15 g of essential amino acids (CAA) altered the metabolic response to a nutritionally mixed meal in healthy, recreationally active male volunteers. A control group (CON; n = 6, 38 +/- 8 yr, 86 +/- 10 kg, 179 +/- 3 cm) received a liquid mixed meal [protein, 23.4 +/- 1.0 g (essential amino acids, 14.7 +/- 0.7 g); carbohydrate, 126.6 +/- 4.0 g; fat, 30.3 +/- 2.8 g] every 5 h (0830, 1330, 1830). The experimental group (SUP; n = 7, 36 +/- 10 yr, 87 +/- 12 kg, 180 +/- 3 cm) consumed the same meals but, in addition, were given CAA supplements (1100, 1600, 2100). Net phenylalanine balance (NB) and fractional synthetic rate (FSR) were calculated during a 16-h primed constant infusion of L-[ring-2H5]phenylalanine. Ingestion of a combination of CAA supplements and meals resulted in a greater mixed muscle FSR than ingestion of the meals alone (SUP, 0.099 +/- 0.008; CON, 0.076 +/- 0.005%/h; P < 0.05). Both groups experienced an improvement in NB after the morning (SUP, -2.2 +/- 3.3; CON, -1.5 +/- 3.5 nmol x min(-1) x 100 ml leg volume(-1)) and evening meals (SUP, -9.7 +/- 4.3; CON, -6.7 +/- 4.1 nmol x min(-1) x 100 ml leg volume(-1)). NB after CAA ingestion was significantly greater than after the meals, with values of 40.2 +/- 8.5 nmol x min(-1) x 100 ml leg volume(-1). These data indicate that CAA supplementation produces a greater anabolic effect than ingestion of intact protein but does not interfere with the normal metabolic response to a meal.  相似文献   

15.
The dissimilatory perchlorate reducers mainly belong to two monophyletic groups, viz. Dechloromonas and Azospira in the beta subclass of Proteobacteria. The present study describes isolation and genetic characterization of Dechlorospirillum anomalous strain JB116 that belongs to alpha subclass of Proteobacteria. The strain JB116 was isolated under facultative anaerobic conditions on a growth medium containing sodium perchlorate and sodium acetate as electron (e(-)) acceptor and e(-) donor, respectively. The strain is a spirillum shaped, dissimilatory perchlorate and nitrate reducer that prefers nitrate to perchlorate. It grows heterotrophically with acetate at temperatures between 25-35 degrees C, NaCl concentrations between 0-0.5% and pH of 7-7.8. The strain JB116 is the second only representative strain within D. anomalous that shares 99% 16S rDNA sequence similarity with the type strain D. anomalous strain WD.  相似文献   

16.
Knowledge about the relationship between microbial community structure and hydrogeochemistry (e.g., pollution, redox and degradation processes) in landfill leachate-polluted aquifers is required to develop tools for predicting and monitoring natural attenuation. In this study analyses of pollutant and redox chemistry were conducted in parallel with culture-independent profiling of microbial communities present in a well-defined aquifer (Banisveld, The Netherlands). Degradation of organic contaminants occurred under iron-reducing conditions in the plume of pollution, while upstream of the landfill and above the plume denitrification was the dominant redox process. Beneath the plume iron reduction occurred. Numerical comparison of 16S ribosomal DNA (rDNA)-based denaturing gradient gel electrophoresis (DGGE) profiles of Bacteria and Archaea in 29 groundwater samples revealed a clear difference between the microbial community structures inside and outside the contaminant plume. A similar relationship was not evident in sediment samples. DGGE data were supported by sequencing cloned 16S rDNA. Upstream of the landfill members of the beta subclass of the class Proteobacteria (beta-proteobacteria) dominated. This group was not encountered beneath the landfill, where gram-positive bacteria dominated. Further downstream the contribution of gram-positive bacteria to the clone library decreased, while the contribution of delta-proteobacteria strongly increased and beta-proteobacteria reappeared. The beta-proteobacteria (Acidovorax, Rhodoferax) differed considerably from those found upstream (Gallionella, Azoarcus). Direct comparisons of cloned 16S rDNA with bands in DGGE profiles revealed that the data from each analysis were comparable. A relationship was observed between the dominant redox processes and the bacteria identified. In the iron-reducing plume members of the family Geobacteraceae made a strong contribution to the microbial communities. Because the only known aromatic hydrocarbon-degrading, iron-reducing bacteria are Geobacter spp., their occurrence in landfill leachate-contaminated aquifers deserves more detailed consideration.  相似文献   

17.
Bacterial communities in water samples and eel slime were investigated by fluorescence in situ hybridization of whole bacterial cells in an eel intensive culture system over 1 year. A newly developed probe, matching 27 Vibrio spp., and a specific probe for Vibrio vulnificus were used. Phylogenetic probes complementary to selected regions of the 16S and 23S ribosomal RNA revealed that Proteobacteria of the alpha and beta subclass were predominant in water and eel slime. Members of the gamma subclass (e.g. vibrios and aeromonads) were more abundant in eel slime, although no V. vulnificus was detected.  相似文献   

18.
The depth distribution of planctomycete abundance has been examined in six different sites of the Sphagnum peat bog in Bakchar, Tomsk oblast, Russia. In situ hybridization of peat with the fluorescently labeled oligonucleotide probes PLA46 and PLA886, reported to be group-specific for representatives of the phylum Planctomycetes, revealed two distinct population maxima of these bacteria in all of the profiles examined. The first population maximum was detected in the uppermost, oxic layer of the bog profile, while the second maximum was located at a depth of 30 cm below the water table level. The population sizes of planctomycetes in the uppermost layer and at a depth of 30 cm were of the same order of magnitude and comprised 0.5-1.5 x 10(7) and 0.4-0.7 x 10(7) cells per g of wet peat, respectively. Only 25-30% of the total number of planctomycete cells in the anoxic layer could be detected if the probe PLA886, whose target specificity is restricted to taxonomically characterized aerobic planctomycetes of the genera Gemmata, Planctomyces, Pirellula, and Isosphaera, was used alone. Other planctomycete cells in this layer were detected only with the probe PLA46, which possesses a much wider scope. This suggests the affiliation of these organisms with a yet undescribed phylogenetic subgroup within the Planctomycetes.  相似文献   

19.
Searching for life in extreme terrestrial environments can be a model of that for extraterrestrial life. Submarine hydrothermal system is one of promising sites for the frontier of life on the earth. Here seawater and vent chimnies were collected from deep-sea hydrothermal vents at Suiyo Seamount, Izu-bonin arc, Pacific Ocean as a part of Archaean Park Project. Pure seawater sample of 300 degrees C (purity>97%) could be collected. Dissolved and total hydrolyzable amino acids were determined by ion-exchange HPLC, and their enantiomeric ratio was measured by reversed-phase HPLC for the first time. Glycine and serine were two most abundant amino acids, followed by other proteinous amino acids such as alanine, glutamic acid and aspartic acid. Non-proteinous amino acids were detected as minor constituents. Most of the amino acids detected were of the L-form. Thus amino acids of abiotic origin were quite minor, and most of the amino acids detected were formed biologically. These results, together with analytical results of the vent chimney samples, suggest that there is active microbial activities near the hydrothermal systems.  相似文献   

20.
A SYBR Green real-time quantitative PCR (Q-PCR) assay for the detection and quantification of Bacteria and Archaea present in the glassy rind of seafloor basalts of different ages and water depths is presented. Two sets of domain-specific primers were designed and validated for specific detection and quantification of bacterial and archaeal 16S rRNA genes in DNA extracted from basaltic glass. Total cell numbers were also estimated by fluorescence microscopy analysis of SYBR Gold-stained samples. The results from the two different approaches were concurrent, and Q-PCR results showed that the total number of cells present in basalts was in the range from 6 x 10(5) to 4 x 10(6) cells g(-1) basaltic glass. Further, it was demonstrated that these cells were almost exclusively from the domain Bacteria. When applying the same methods on samples of different ages (22 years-0.1 Ma) and water depths (139-3390 mbsl), no significant differences in cell concentrations or in the relative abundance of Archaea and Bacteria were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号