首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Schiff reagents were made by two methods. The first procedure gave a Schiff reagent of pH 1.8-2.4. It was accomplished by passing sulfur dioxide into 0.5% aqueous fuchsin solution at room temperature, stopping at reddish violet, and decolorizing allowed to occur on standing. In another method, 1.5 ml. of 5.6% sulfurous acid was added to 100 ml. 0.5% fuchsin solution and the mixture produced in several hours a colorless Schiff reagent of pH 3. The solution remained unchanged for some weeks when kept stoppered in a refrigerator.

To test these Schiff reagents, histochemical examinations were carried out with Feulgen and McManus reaction in various pH ranges. These experiments showed that the Feulgen reaction was optimum at pH 3, the McManus reaction at pH 2.4.  相似文献   

2.
Ultraviolet (UV) absorption (200-330 nm) for 0.5 mg/ml aqueous solutions of basic fuchsia unadjusted and those adjusted to pH 0, 1.5, 8.5, and 11 were determined as well as spectra in the visible range (400-675 nm) for solutions with pH 1.9, 2.8, 3.9, 4.7, 5.5, 5.9, 6.5, 7.5, 9.3, 10.4, and 11. The UV absorbance of degassed Schiff reagent containing 1 or 0.5 mg dye/ml, and that of this reagent adjusted to pH 1.5, 2.3, 3.1, 4.5, 6.0, 7.1, and 8.4 were obtained for comparison. The progressive reaction of formalin with degassed Schiff reagent, followed spectrometrically for 2.5 hr, required 2 hr to reach completion. The degassed Schiff reagent contained only traces of-SO3H as judged from its minimal absorbance between 280 and 295 nm. The UV absorption of this reagent and basic fuchsin in 1 N HCl were found to be identical. The absorbance is that of basic fuchsin reduced by the addition of Cl- or SO3H- to the central methane carbon and H to the amino groups, therefore the leuco structure of basic fuchsin so reduced shows the fomation-NH3 groups. Infrared (IR) spectra of basic fuchsin, Schiff crystals, and a crystalline formalin-Schiff reaction product support these observations and indicate that the final colored product is a methylsulfonic acid derivative of basic fuchsin. Identical IR spectra were obtained for two types of crystals derived from Schiff reagents indicating that both are the same chemically, although only one became colored on exposure to air. When these crystals were redissolved and SO2 added, a Schiff reagent of appropriate pH was produced. Since it is derived from a crystalline product, this type of reagent should be useful in histochemical studies  相似文献   

3.
In describing a method of testing for the return of color in decolorized fuchsin for use in Endo Medium, French states that variations in hydrogen ion concentration fail to influence the appearance of color in this medium.

Duplications of this test were made using alcoholic and aqueous solutions of fuchsin and both sodium sulfite and sodium bisulfite as decolorizing agents.

In the decolorized alcoholic solutions of fuchsin the color failed to reappear when formalin was added, but a small amount of a weak solution of lactic acid caused the color to return.

Alcoholic solutions of fuchsin failed to decolorize in sodium bisulfite solutions until a few drops of NaOH were added. The color, then, reappeared immediately.

Solutions of peptones to which fuchsin had been added were substituted for the original fuchsin solution. Alcoholic and aqueous solutions of fuchsin were added to equal amounts of a 1% peptone solution. The peptone solutions varied in their hydrogen ion concentration and the results showed that those which were neutral decolorized readily while the more acid solutions were but partially decolorized.

Fuchsin decolorized according to results found in this test, was not satisfactory in the Endo medium, especially in the case of the aqueous solutions of fuchsin.

Experiments which were carried on by other workers and checked with this method all indicated that some acid is necessary to secure the restoration of color.  相似文献   

4.
The aqueous solutions of 3 acidic and 14 basic dyes used as reagents for detection of lipids without their destruction are tested on plates for highly effective TLCh with the silicagel layer fixed by the silicic acid sol. It is shown that 0.002% solution of basic fuchsin in 1% boric acid reveals neutral, phospho- and glycolipids with the sensitivity compared with such in detection of sulphuric acid. It is established that detection of lipids by this reagent with the use of TLCh does not change the composition of their fatty acids.  相似文献   

5.
Feulgen reagent quickly heated to and maintained at 60 C just before immersion of plant material, basic fuchsin in acid alcohol at room temperature, and pinacyanol at room temperature will stain hydrolyzed root tip nuclei and chromosomes in one minute or less. This technic, coupled with fast fixation, can be utilized when uncertainties exist as to when to begin sampling plant meristem cells for mitoses or when time does not allow for standard fixation and Schiff staining.  相似文献   

6.
More or less permanent mounts of fungi, algae, root tips, epidermis, germinating spores, and other small objects may be made readily by transferring the material to Amann's lacto-phenol containing anilin blue, W. S. or acid fuchsin, used singly or mixed. The addition of 20 to 25% of glacial acetic acid to these mixtures is frequently advantageous; or material may be stained with various dyes—acid fuchsin, anilin blue, W. S. (cotton blue), rose bengal, phloxine, hematoxylin—in aqueous solutions containing 5% of phenol, and then mounted in lacto-phenol, 50% glycerin or phenolglycerin, depending on the dye used. The phenol solutions of acid fuchsin and anilin blue are acidified with acetic acid and those of rose bengal and phloxine are made slightly alkaline with ammonium hydroxide. The addition of ferric chloride to acid fuchsin or acidified hematoxylin may improve staining. Fixation may be preferable but may be omitted, especially with fungi. Formulae for the mounting media and ten staining mixtures are given.  相似文献   

7.
4- Hydroxybenzoylhydrazine ( PAHBAH ) reacts with glucose in hot aqueous solution when alkali exceeds aroylhydrazine concentration. The related 2- furoylhydrazine ( FAH ) reacts at lower alkali concentrations, making this an attractive alternative carbohydrate reagent since it is (unlike PAHBAH ) freely water soluble. FAH reacts with monosaccharides more slowly than does PAHBAH , giving about half the color. Its specificity and behavior with a bismuth catalyst parallel those of PAHBAH . Solutions which contain 0.05 mol/liter PAHBAH with 1.5 mmol/liter bismuth III (as tartrate complex) and 0.5 mol/liter sodium hydroxide, or 0.01 mol/liter FAH with 1.5 mmol/liter bismuth III and 0.1 mol/liter sodium hydroxide are sensitive reagents for quantitative analysis, giving stable colors with many carbohydrates within 10 min at 75 degrees C. Ketosamines react more rapidly than glucose at lower temperatures and undergo similar reactions in less alkaline solutions. At pH less than 8, the reaction is specific for these 1- aminohexoses , and FAH can be used as a reagent for their assay.  相似文献   

8.
The use of Schiff reagent to demonstrate polysaccharides (after prior periodic oxidation) and nucleic acids (after prior acid hydrolysis) is unnecessary since the same results are obtained by substituting a 20 min staining in a 0.5% w/v solution of basic fuchsin in acid alcohol (ethanol-water-concentrated HC1, 80:20:1) followed by a rinse in alcohol. The shade of the basic fuchsin staining is a little yellower than that achieved with Schiff reagent but the selectivity, light fastness, response to different fixatives, and to prior histo-chemical blocking of the tissue section were much the same for the two methods. The need for prior oxidation or hydrolysis and the inhibitory effect of aldehyde blocking techniques indicate that basic fuchsin, like Schiff reagent, reacts with aldehyde groups. Infrared studies indicate that for cellulose the reaction product is an azomethine.  相似文献   

9.
On oxidation with performic (or peracetic) acid ceroid becomes Schiff positive. This reaction is prevented by prior bromination, but not by acetylation. Interposition of bisulfite, semi-carbazide or phenylhydrazine blockades after the oxidation and before the leucofuchsin prevents the positive Schiff reaction on short exposure, but a long (3 hour) Schiff bath overcomes the blockade in all three instances. Prior acetylation blocks the periodic acid Schiff reaction of ceroid, but bromination does not.

These findings indicate the presence in ceroid of ethylenic groupings as well as 1,2 glycols.  相似文献   

10.
The copper phthalocyanin dye astra blue has been used to stain differentially mast cells of the intestine; however, the procedure has not been used widely because of the difficulty in preparing and using the dye solution. Described here is a simple, reliable, and consistent method for selectively staining mast cells using a dye solution that may be prepared in any laboratory without the aid of sophisticated pH metering equipment. Astra blue is mixed with an alcoholic solution containing MgCl2 · 6H2O and the pH indicator pararosaniline hydrochloride. Concentrated hydrochloric acid is added dropwise, changing the dye mixture from purple to violet and then to blue. In this low range the weakly ionizing ethanol provides a more stable hydrogen ion concentration than the corresponding aqueous solutions used previously. Alcoholic acid fuchsin is a convenient counterstain, and this simple procedure then provides good contrast between the blue staining mast cell granules and the red tissue background.  相似文献   

11.
A simplified method for staining mast cells with astra blue   总被引:3,自引:0,他引:3  
The copper phthalocyanin dye astra blue has been used to stain differentially mast cells of the intestine; however; the procedure has not been used widely because of the difficulty in preparing and using the dye solution. Described here is a simple, reliable, and consistent method for selectively staining mast cells using a dye solution that may be prepared in any laboratory without the aid of sophisticated pH metering equipment. Astra blue is mixed with an alcoholic solution containing MgCl2-6H2O and the pH indicator pararosaniline hydrochloride. Concentrated hydrochloric acid is added dropwise, changing the dye mixture from purple to violet and then to blue. In this low range the weakly ionizing ethanol provides a more stable hydrogen ion concentration than the corresponding aqueous solutions used previously. Alcoholic acid fuchsin is a convenient counterstain, and this simple procedure then provides good contrast between the blue staining mast cell granules and the red tissue background.  相似文献   

12.
From the study of 38 samples of acid fuchsin prepared from several types of basic fuchsin and under varying conditions it is found that rosanilin sulfonated between 80° and 85°C. gives the best results in the Van Gieson staining technic. Staining tests also show that a satisfactory acid fuchsin will give the best results when employed with picric acid in the ratio of 1 part of the 1 per cent aqueous acid fuchsin to 20 parts of the aqueous picric acid. Details for the preparation and use of acid fuchsin are given.  相似文献   

13.
From the study of 38 samples of acid fuchsin prepared from several types of basic fuchsin and under varying conditions it is found that rosanilin sulfonated between 80° and 85°C. gives the best results in the Van Gieson staining technic. Staining tests also show that a satisfactory acid fuchsin will give the best results when employed with picric acid in the ratio of 1 part of the 1 per cent aqueous acid fuchsin to 20 parts of the aqueous picric acid. Details for the preparation and use of acid fuchsin are given.  相似文献   

14.
A study has been made on the possibility of replacing leucofuchsin by colored basic fuchsin for the histochemical demonstration of aldehydes. Several tissues from mammals and various pertinent fixatives were used. Aldehydes were freed from carbohydrates by oxidation and from thymonucleic acid by hydrolysis.

It was found that the colored form and not necessarily the leucoform of basic fuchsin can be used histochemically in demonstrating aldehydes. The technic used is as follows: (1) Treat with 1.0-0.5% H5IO6 (or in 1% KIO4 in M/1 H2SO4) for 5 to 10 min. and wash thoroughly. For thymonucleic acid hydrolize with N HCl 5 min. at room temperature, 10 min. at 60°C. and 5 min. at room temperature. (2) Stain for 2-3 min. with 0.05% basic fuchsin in 5% ethanol, 3% phenol. (3). Transfer immediately to 1 or 2 changes of 1% sodium bisulphite or potassium metabisulphite in 0.1-0.2 N H2SO4 for a total of 5 min. (4) Rinse with water and treat with M H2SO4 in 95% ethanol for 3-5 min. 6. Wash thoroughly in water and dehydrate, clear, and mount. For glycogen and mucin the following counterstaining solution is recommended: orange G, 0.25 g.; light green SFY, 0.10 g.; phosphotungstic acid 0.50 g.; 50% ethanol, 100 ml.; glacial acetic acid, 0.25 ml.  相似文献   

15.
Effects of different fuchsin analogs on the Feulgen reaction   总被引:1,自引:0,他引:1  
The Feulgen reaction is used for cytophotometric quantitation of nuclear DNA. Schiff's reagents used in the Feulgen reaction usually are prepared from basic fuchsin, a variable mixture of four triaminotriphenylmethane analogs. The effect of the several fuchsin analogs on the quality of Schiff's staining of hydrolyzed DNA is not known. In this investigation Schiff's reagents prepared from relatively pure fuchsin analogs were used to determine whether different fuchsin analogs affect the absorbance of the Schiff's reagent-DNA complexes formed in solution. It has been determined that the complex formed by pararosaniline-Schiff's reagent and hydrolyzed DNA exhibits lower absorption than do corresponding complexes formed by Schiff's reagents prepared from magenta II or from new fuchsin.  相似文献   

16.
Commercial aqueous 25 per cent glutaraldehyde solutions contain no stable derivative of this aldehyde, but compounds of variable molecular weight which easily revert to glutaraldehyde. The effect of pH on the reaction of glutaraldehyde with amino acids and on the stability of the products under acid conditions, shows the importance of the structure modification of the dialdehyde which occurs when pH increases, and even leads to precipitation in highly alkaline solutions. This precipitate results from aldol condensation of glutaraldehyde molecules. It contains aldehyd groups conjugated with ethylenic double bonds. Such a structure reacts with amino groups to give an imino bond, stabilized by resonance with the ethylenic bond, and does not undergo Michael-type addition reactions.Therefore, glutaraldehyde does not react with proteins under its free form, but as an unsaturated polymer, which gives imino bonds stabilized by conjugation.  相似文献   

17.
A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, beta-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange.  相似文献   

18.
Three methods that are adapted to the various consistencies of plants are as follows: 1. Samples are placed for 10-14 hr at 60° C in a 1% aqueous solution of basic fuchsin, to which 10 gm of solid NaOH per 100 ml are added. 2. Samples when taken out of 95% alcohol are placed in a 1% solution of basic fuchsin in 95% alcohol for 24 hr; after washing in water, they are placed in a 15% solution of NaOH at 60° C until cleared. 3. Samples are placed in a 15% aqueous solution of NaOH at 60° C until cleared, then for 24 hr at 60° C in 15% NaOH containing basic fuchsin. After being stained and cleared by one of these three methods, the samples are rinsed in water, dehydrated and then passed into a mixture of absolute alcohol and concentrated HC1 (3:1) for 1-15 min, rinsed in absolute alcohol, cleared in xylene and mounted in Canada balsam. The lignified tissues appear red; the others, transparent.  相似文献   

19.
Aldehyde fuchsin stains pancreatic B cell granules, hypophyseal basophils, goblet cell mucins, gastric chief cells, hyaline cartilage, and elastica. Neither the chemical structure of aldehyde fuchsin nor its staining mechanism is known. This study was undertaken to clarify the role of the fuchsin component of aldehyde fuchsin in its staining reaction. The major findings of this investigation include: 1) single N-methylation of the fuchsin molecule abolishes staining of unoxidized pancreatic B cells, although it does not prevent reaction of fuchsin with paraldehyde; 2) aldehyde fuchsin is probably a Schiff base condensation product of pararosaniline and acetaldehyde; 3) a Schiff base structure alone cannot account for aldehyde fuchsin staining of unoxidized pancreatic B cells; 4) a fully potent aldehyde fuchsin is possibly a Tris-Schiff base derivative of pararosaniline.  相似文献   

20.
Summary Oxidation and bromination of mouse kidney JG cell-granules result in the production of cysteic acid from cystine; cysteic acid is capable of taking up rapidly and selectively certain basic triphenyl methane dyes including aldehyde fuchsin at lower pH levels.After treatment with periodic acid, bromine and hydrochloric acid, the JG granules or the nuclear chromatin also take up the basic triphenyl methane dyes (including aldehyde fuchsin) which contain amino groups, probable as a result of the production of aldehyde groups. Basic triphenyl methane lacking amino groups does not react with aldehydes.Some substance present in JG granules could be stained by aldehyde fuchsin after prior oxidation; HCl methyl violet 2B was taken up both with or without prior oxidation. Only strong methylation completely abolished these affinities which were restored after demethylation. These reactions are attributed to cystine.The staining of JG granules with dilute aldehyde fuchsin and dilute methyl violet 2B is not affected by oxidation, bromination, aldehyde blocking and hydrolysis; these reactions are abolished by mild methylation, but restored by subsequent saponification. These staining properties are due to the presence of carboxylic acid in JG granules.The positive PAS reaction of JG granules is due to the presence of 1.2-glycol in the same granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号