首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascorbic acid (AA) in the leaf apoplast has the potential to limit ozone injury by participating in reactions that detoxify ozone and reactive oxygen intermediates and thus prevent plasma membrane damage. Genotypes of snap bean ( Phaseolus vulgaris L) were compared in controlled environments and in open-top field chambers to assess the relationship between extracellular AA content and ozone tolerance. Vacuum infiltration methods were employed to separate leaf AA into extracellular and intracellular fractions. For plants grown in controlled environments at low ozone concentration (4 nmol mol−1 ozone), leaf apoplast AA was significantly higher in tolerant genotypes (300–400 nmol g−1 FW) compared with sensitive genotypes (approximately 50 nmol g−1 FW), evidence that ozone tolerance is associated with elevated extracellular AA. For the open top chamber study, plants were grown in pots under charcoal-filtered air (CF) conditions and then either maintained under CF conditions (29 nmol mol−1 ozone) or exposed to elevated ozone (67 nmol mol−1 ozone). Following an 8-day treatment period, leaf apoplast AA was in the range of 100–190 nmol g−1 FW for all genotypes, but no relationship was observed between apoplast AA content and ozone tolerance. The contrasting results in the two studies demonstrated a potential limitation in the interpretation of extracellular AA data. Apoplast AA levels presumably reflect the steady-state condition between supply from the cytoplasm and utilization within the cell wall. The capacity to detoxify ozone in the extracellular space may be underestimated under elevated ozone conditions where the dynamics of AA supply and utilization are not adequately represented by a steady-state measurement.  相似文献   

2.
Apoplast/cytoplasm partitioning of ascorbic acid (AA) was examined in four genotypes of snap bean ( Phaseolus vulgaris L.) known to differ in ozone sensitivity. Plants were grown in pots under field conditions using open-top chambers to establish charcoal-filtered (CF) air (36 nmol mol−1 ozone) or elevated ozone (77 nmol mol−1 ozone) treatments. AA in fully expanded leaves of 36-day-old plants was separated into apoplast and cytoplasm fractions by vacuum infiltration methods using glucose 6-phosphate as a marker for cytoplasm contamination. Apoplast ascorbate levels ranged from 30 to 150 nmol g−1 fresh weight. Ozone-sensitive genotypes partitioned 1–2% of total AA into the apoplast under CF conditions and up to 7% following a 7-day ozone exposure. In contrast, an ozone-tolerant genotype partitioned 3–4% of total leaf AA into the leaf apoplast in both CF and ozone-treated plants. The results suggest that genetic background and ozone stress are factors that affect AA levels in the extracellular space. For all genotypes, the fraction of AA in the oxidized form was higher in the apoplast compared to the cytoplasm, indicative of a more oxidizing environment within the cell wall.  相似文献   

3.
Photosynthesis in ozone-exposed duckweed (Lemna gibba)   总被引:2,自引:0,他引:2  
The photosynthetic light saturation curve in duckweed was lowered by 20–25% after ozone exposure (300 nmol mol−1, 1 h). The light flux and oxygen concentration during ozone-exposure had no effect on reduction of net photosynthesis. Net photosynthesis and photorespiration were both depressed by about 40% after exposure for 1 h to 360 nmol mol−1 ozone. We could not find any change in dark respiration after ozone exposure below 300 nmol mol−1. When the concentration of ozone was doubled from 150 nmol mol−1 to 300 nmol mol−1, the uptake of ozone in duckweed changed from 100 nmol m−2 s−1 to 170 nmol m−2 s−1. We found no differences in fluorescence (pattern) between ozone treated plants and the control plants during a period of 150 min after ozone treatment, but there was an increase in synthesis of the Dl-protein and a significant reduction in degradation after ozone treatment (300 nmol mol−1, 1 h). These results, together with fluorescence measurements, indicate that photochemical electron transport was not responsible for the ozone-induced reduction in net photosynthesis.  相似文献   

4.
The aqueous phase of cell walls in stems of Kalanchoë daigremontiana Hamet et Perrier de la Bâthie (apoplast) contained ascorbic acid (AA) and dehydroascorbic acid (DHA). Ratios of AA/(AA + DHA) were 0.31 ± 0.12 (SD, n = 4), whereas those of whole stems (tissues plus apoplast) were >0.9. The amounts of (AA + DHA) in the stems were 1970 ± 190 (SD, n = 4) nmol g−1 fresh weight and those in the apoplast were 14 ± 2 (SD, n = 4) nmol g−1 fresh weight of stems. Ratios of AA/(AA + DHA) differed in different tissues of the stems. The ratios of AA/(AA + DHA) of apoplast plus symplast were in the following order: pith ⋍ epidermis plus cortex > vascular bundle system, and those of apoplast were: pith > epidermis plus cortex > vascular bundle system. Ratios of AA/(AA + DHA) in the apoplast of the different tissues decreased to about 1/3 of the original values after wounding, while the amounts of (AA + DHA) remained largely unaffected. In contrast, soluble apoplastic peroxidase activities increased 30- to 70-fold on wounding. Hydrogen peroxide infiltrated into stems caused a rapid oxidation of AA. Coniferyl alcohol was oxidized by peroxidase in intercellular washing fluid and by cell wall-bound peroxidase. The oxidation of coniferyl alcohol by peroxidase in intercellular washing fluid was completely inhibited as long as AA was present in reaction mixtures. The oxidation of the coniferyl alcohol by cell wall-bound peroxidase was partially inihibited by AA and the degree of inhibition was dependent upon the concentration of AA. The possible functions of AA in the apoplast are discussed in relation to the control of peroxidase-dependent oxidation of phenolics.  相似文献   

5.
The effects of elevated concentrations of atmospheric carbon dioxide and ozone on diurnal patterns of photosynthesis have been investigated in field-grown spring wheat ( Triticum aestivum ). Plants cultivated under realistic agronomic conditions, in open-top chambers, were exposed from emergence to harvest to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2] at ambient (380 μmol mol−1, seasonal mean) or elevated (692 μmol mol−1) levels, [O3] at ambient (27 nmol mol−1, 7 hr seasonal mean) or elevated (61 nmol mol−1) levels. After anthesis, diurnal measurements were made of flag-leaf gas-exchange and in vitro Rubisco activity and content. Elevated [CO2] resulted in an increase in photoassimilation rate and a loss of excess Rubisco activity. Elevated [O3] caused a loss of Rubisco and a decline in photoassimilation rate late in flag-leaf development. Elevated [CO2] ameliorated O3 damage. The mechanisms of amelioration included a protective stomatal restriction of O3 flux to the mesophyll, and a compensatory effect of increased substrate on photoassimilation and photosynthetic control. However, the degree of protection and compensation appeared to be affected by the natural seasonal and diurnal variations in light, temperature and water status.  相似文献   

6.
Ascorbate transport from the apoplast to the symplast in intact leaves   总被引:4,自引:0,他引:4  
Infiltration of reduced ascorbate (ASC) into the leaves of Betula pendula Roth and subsequent measurement of its loss therein after incubation allowed us to follow ascorbate transport from apoplast to symplast in intact leaves. All of the ascorbate extracted from the native apoplast was in fully oxidized form, dehydroascorbate (DHA). When 5 m M of ASC was infiltrated into the leaves, its intense decay occurred, but only 55% of ASC lost was recovered in apoplast as DHA. When ASC was added to the freshly extracted intercellular washing fluid (IWF), ASC oxidation occurred as well. However, all oxidized ASC was recovered as DHA, indicating that further decomposition of DHA did not occur. Similarly, all of the ASC infiltrated into the leaves was found therein either as ASC or DHA after incubation of leaves for up to 60 min. On this base the ascorbate infiltrated into the leaves and not recovered in the IWF was interpreted as ascorbate taken up into the symplast. The calculated uptake rates of ascorbate at different ASC concentrations followed saturation kinetics with the maximum uptake rate of 300 nmol m−2 plasma membrane (PM) area min−1 and Michaelis constant of 12.8 m M . The uptake of ascorbate was significantly inhibited by the addition of dithiothreitol or by PM H+ ATPase inhibitor erythrosin B. Thus, our results support the previous observations that DHA is preferably transported from the apoplastic to the cytoplasmic side of the membrane and show that this process is dependent upon PM proton gradient.  相似文献   

7.
The aim of this work was to examine the correspondence between apoplastic/symplastic antioxidant status and previously reported plant age-related shifts in the ozone (O3) resistance of Plantago major L. Seed-grown plants were fumigated in duplicate controlled environment chambers with charcoal/Purafil®-filtered air (CFA) or CFA plus 70 nmol mol−1 O3 for 7 h d−1 over a 42 d period. Measurements of stomatal conductance and antioxidants were made after 14, 28 and 42 d fumigation, on leaves at an equivalent stage of development (youngest fully expanded leaf, measured c . 9 d after emergence). Ozone exposure resulted in a similar decline in stomatal conductance across plant ages, indicating that increases in O3 resistance with plant age were mediated through changes in the tolerance of leaf tissue rather than enhanced pollutant exclusion. Leaf apoplastic washing fluid was found to contain 'unspecific' peroxidase, ascorbate peroxidase, superoxide dismutase and ascorbate, but not glutathione and the enzymes required to facilitate the regeneration of ascorbate from its oxidized forms. A weak induction in the activity of certain symplastic antioxidants was found after 14 d O3 fumigation, despite a lack of visible symptoms of injury, but shifts in symplastic antioxidant enzyme activity were not consistent with previously observed increases in resistance to O3 with plant age. By contrast, changes in 'unspecific' peroxidase activity and in the small pool of ascorbate in the leaf apoplast were found to accompany age-related shifts in O3 resistance. It is concluded that constituents of the leaf apoplast may constitute a potentially important front line defence against O3.  相似文献   

8.
The redox potential of the cell, as well as the antioxidant status of the tissue, are considered to be important regulatory constituents in an adaptive response in plants. Here the involvement of active antioxidants ascorbic acid (AA), reduced glutathione (GSH) and α - and β -tocopherols in reactive oxygen species scavenging, and the effect of anoxic stress on their reduction state were studied in 4 anoxia-tolerant and -intolerant plant species: Iris germanica L., Iris pseudacorus L., wheat ( Triticum aestivum L. cv. Leningradka) and rice ( Oryza sativa L. cv. VNIIR). The initial antioxidant content (both AA and GSH) was higher in the rhizomes of the more anoxia-tolerant Iris spp., as compared with that of the roots of the cereals. The predominant form of ascorbate was dehydroascorbic acid (DHA) in the cereals and AA in the Iris spp. Imposition of anoxia with subsequent reoxygenation resulted in an overall depletion of the reduced forms of antioxidants. No concurrent increase in oxidised forms (DHA and conjugated glutathione) was observed in anoxic samples. α -tocopherol content in Iris spp. was in the range 1–2 μg g−1 fresh weight, while β -tocopherol content was higher in the anoxia-intolerant I. germanica (7.2 μg g−1 fresh weight) as compared with the tolerant I. pseudacorus (1.5 μg g−1 fresh weight). In I. pseudacorus , a significant decrease in α - and β -tocopherol levels was observed only after long-term (45 days) anoxia. The results suggested exclusion of AA and GSH from the redox cycling under prolonged anoxia, and a concomitant decrease in the redox state, as well as an anoxia-induced depletion of α - and β -tocopherols.  相似文献   

9.
The cytokinin content of stem tissues, primary genetic tumours (excised from 2-month-old plants) and 3-week-old in vitro cultured genetic tumour tissues derived from Nicotiana glauca (Grah.) × langsdorffii (Weinm.) and N. suaveolens (Lehm.) × langsdorffii (Weinm.) hybrids and stem tissues derived from 2-month-old N. suaveolens and N. langsdorffii plants has been analysed by radioimmunoassay. Stem tissues of tumour-prone hybrids contain high cytokinin levels (3–3.7 nmol g−1). This increase is caused mainly by increased levels of cytokinin nucleotides, particularly those of zeatin nucleotide (0.5 nmol g−1) in stem tissues of parent plants and 2.4 nmol g−1 in stem tissues of hybrids). All other tissues contain lower cytokinin levels (0.7–1.7 nmol g−1). Cytokinin bases and ribosides are major compounds in cultured tumour tissues while the nucleotides are dominant cytokinins in all freshly excised tissues from parent plants and their hybrids. In a separate study, the metabolic fate of supplied [3Hj-zeatin riboside. which is inactivated mainly by sidechain cleavage, has been studied. The results collectively suggest that cytokinins may be involved in tumourigenesis.  相似文献   

10.
Luwe M  Takahama U  Heber U 《Plant physiology》1993,101(3):969-976
Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h.  相似文献   

11.
Ozone-sensitive and tolerant genotypes of snap bean ( Phaseolus vulgaris L.) were compared for differences in leaf ascorbic acid (vitamin C), glutathione and α -tocopherol (vitamin E) content to determine whether antioxidant levels were related to ozone tolerance. Seven genotypes were grown in pots under field conditions during the months of June and July. Open top chambers were used to establish either a charcoal filtered (CF) air control (36 nmol mol−1 ozone) or a treatment where CF air was supplemented with ozone from 8:00 to 20:00 h with a daily 12 h mean of 77 nmol mol−1. Fully expanded leaves were analyzed for ascorbic acid, chlorophyll, glutathione, guaiacol peroxidase (EC 1.11.1.7) and α -tocopherol. Leaf ascorbic acid was the only variable identified as a potential factor in ozone tolerance. Tolerant genotypes contained more ascorbic acid than sensitive lines, but the differences were not always statistically significant. Genetic differences in glutathione and α -tocopherol were also observed, but no relationship with ozone tolerance was found. Guaiacol peroxidase activity and leaf α -tocopherol content increased in all genotypes following a one week ozone exposure, indicative of a general ozone stress response. Ozone had little effect on the other variables tested. Overall, ozone sensitive and tolerant plants were not clearly distinguished by differences in leaf antioxidant content. The evidence suggests that screening for ozone tolerance based on antioxidant content is not a reliable approach.  相似文献   

12.
Studies were performed to determine if cyclooxygenase (COX)-2 regulates muscarinic receptor-initiated signaling involving brain phospholipase A2 (PLA2) activation and arachidonic acid (AA; 20 : 4n-6) release. AA incorporation coefficients, k* (brain [1–14C]AA radioactivity/integrated plasma radioactivity), representing this signaling, were measured following the intravenous injection of [1–14C]AA using quantitative autoradiography, in each of 81 brain regions in unanesthetized COX-2 knockout (COX-2–/–) and wild-type (COX-2+/+) mice. Mice were administered arecoline (30 mg/kg i.p.), a non-specific muscarinic receptor agonist, or saline i.p. (baseline control). At baseline, COX-2–/– compared with COX-2+/+ mice had widespread and significant elevations of k*. Arecoline increased k* significantly in COX-2+/+ mice compared with saline controls in 72 of 81 brain regions, but had no significant effect on k* in any region in COX-2–/– mice. These findings, when related to net incorporation rates of AA from brain into plasma, demonstrate enhanced baseline brain metabolic loss of AA in COX-2–/– compared with COX-2+/+ mice, and an absence of a normal k* response to muscarinic receptor activation. This response likely reflects selective COX-2-mediated conversion of PLA2-released AA to prostanoids.  相似文献   

13.
When grown at a low P supply, Hakea prostrata R.Br. (Proteaceae) develops dense clusters of determinate branch roots, termed 'proteoid' or 'cluster' roots and accumulates Mn in its leaves. The aim of this study was to vary the production of cluster roots and assess the relationship between Mn uptake and cluster-root mass. We collected native soil from a location inhabited by H . prostrata and amended this with 'high' and 'low' amounts of insoluble or soluble P. After 14 months, we measured the impact of the treatments on cluster-root development and the [P], [Mn], [Fe], [Zn] and [Cu] in young (expanding) and mature leaves. Dry mass and leaf area increased with increasing P availability in the soil, but growth decreased at the highest soluble [P], which caused symptoms of P toxicity. The [P] in young leaves (1.3–2.7 mg g−1 DM) exceeded that in older leaves (0.28–0.85 mg g−1 DM), except when plants were grown with soluble P (3.2–21 mg g−1 DM). Cluster-root formation was inhibited when leaf [P] increased; [P] in young leaves, rather than that in old leaves, appeared to be the factor that determined the proportion of the root mass invested in cluster roots. Old leaves of all treatments had [Mn] from 90 to 120 µg g−1 DM, except for plants grown at high levels of soluble P, when [Mn] decreased below 30 µg g−1 DM. The [Mn] and [Zn] in old leaves and the [Cu] in young leaves were positively correlated with the fraction of roots invested in cluster roots. These findings support our hypothesis that cluster roots play a significant role in micronutrient acquisition, and also provide an explanation for Mn accumulation in leaves of H . prostrata , and presumably Proteaceae in general.  相似文献   

14.
The levels of putrescine (Put), spermidine (Spd) and spermine (Spm) were analyzed in naturally collected samples of the marine macroalgae Dyctiota dichotoma, Gelidium canariensis and Grateloupia doryphora . Polyamines (PAs) appeared in free (35–134 μg g−1 fresh weight) and bound TCA-insoluble form (1 667–2 624 μg g−1 fresh weight). Axenic in vitro cultures of sporelings from G. doryphora were established in the medium containing glycerol. This medium promoted growth and morphogenesis and also increased the free and bound PA levels in the sporelings. Tracer experiments using 70 kBq [U-14C]-glycerol showed significant quantities of radioactivity in Put, Spd and Spm after 20 h of incubation. The effects of glycerol on growth were inhibited by the ornithine decarboxylase (EC 4.1.1.17) inhibitor α -difluoromethylornithine (DFMO). The presence of DFMO in the incubation medium with [U-14C]-glycerol also reduced the radioactivity in PAs.  相似文献   

15.
Annual changes in the nutritive state of North Sea dab   总被引:2,自引:0,他引:2  
The nutritive state of dab Limanda limanda was investigated over a 2-year period at a fixed sampling site northwest of Helgoland (German Bight, North Sea), with respect to feeding habits and the accumulation of biochemical storage products. Ophiuroids formed the main weight of food organisms (50%) while polychaetes (10%), molluscs and crustaceans (<5% each) were less frequent. Feeding activity in males varied between summer and winter, while females fed more constantly. The condition factor and the hepatosomatic index showed characteristic seasonal cycles in both sexes. The glycogen content in the liver reached 40–60 mg g−1 FW in summer and fell to about 10–20 mg g−1 FW in late winter. Total lipids of the liver showed a distinct seasonal cycle with 400 mg g−1 FW in summer and a minimum of 50–100 mg g−1 FW in spring. The lipid content of the muscle ranged from 5 to 6 mg g−1 FW and did not vary significantly between seasons.  相似文献   

16.
Abstract Bacteria showing rapid growth on a nitrogenfree medium and acetylene-reducing activity were isolated from maize roots collected from agricultural soils in Spain. The isolates were Gram-negative motile rods and were identified as Azotobacter chroococcum . Acetylene-reducing activity and microbial counts were determined on root segments from 7- and 30-day-old plants. Rates obtained were in the range of 0.0053–0.848 nmol C2H2· g−1· h−1. Root populations were 1.4–6.0 × 104 micro-organisms · g−1. These results showed that there was an association between A. chroococcum strains and roots of maize planted in some Spanish soils.  相似文献   

17.
The effect of 700 μmol CO2 mol−1, 200 nmol ozone mol−1 and a combination of the two on carbon allocation was examined in Pinus halepensis co-cultured with Betula pendula in symbiosis with the ectomycorrhizal fungus Paxillus involutus . The results show that under low nutrient and ozone levels, elevated CO2 has no effect on the growth of B. pendula or P. halepensis seedlings nor on net carbon partitioning between plant parts. Elevated CO2 did not enhance the growth of the fungus in symbiosis with the birch. On the other hand, ozone had a strong negative effect on the growth of the birch, which corresponded with the significantly reduced growth rates of the fungus. Exposure to elevated CO2 did not ameliorate the negative effects of ozone on birch; in contrast, it acted as an additional stress factor. Neither ozone nor CO2 had significant effects on biomass accumulation in the pine seedlings. Ozone stimulated the spread of mycorrhizal infection from the birch seedlings to neighbouring pines and had no statistically significant effects on phosphoenolpyruvate carboxylase (PEPC) or ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity in the pine needles or on PEPC activity in pine roots.  相似文献   

18.
Abstract: Transport of ascorbate (AA) and dehydroascorbate (DHA) through the petiole into detached leaves of Lepidium sativum and other plant species via the transpiration stream, and energized uptake into leaf tissue, were measured indirectly by recording changes in membrane potential and apoplastic pH simultaneously with substrate‐stimulated respiration and transpiratory water loss. When 25 mM AA or DHA was fed to the leaves, steady state respiration at 25 °C was transiently increased by more than 50 % with AA and 70 % with DHA. Stimulation of respiration was accompanied by a transient breakdown of membrane potential followed by alkalinization of the leaf apoplast suggesting energized uptake at the expense of the transmembrane proton motive force. The average CO2/AA ratio calculated from stimulated respiration during ascorbate uptake was 0.76 ± 0.26 (n = 17). The corresponding ratio for DHA was 1.38 ± 0.28 (n = 11). Far lower CO2/substrate ratios were observed when NaCl or KCl were fed to leaves. The differences indicate either partial metabolism of AA and DHA in addition to energized transport, or less likely, higher energy requirement for transport of AA and DHA than for the inorganic salts. Maximum rates of energized AA transport into leaf tissue (deduced from maxima of extra respiration and calculated on the basis of CO2/AA = 0.76) were close to 650 nmol m‐2 leaf area s‐1, i.e. far higher than most previously reported rates of transport. When the apoplastic concentration of AA was decreased below steady state levels during infiltration/centrifugation experiments, AA was released from leaf cells into the apoplast. This suggests that AA oxidation to DHA in the apoplast (as occurs during extracellular ozone detoxification) triggers energized transport of the DHA into the symplast and simultaneously AA release from the symplast into the apoplast, perhaps together with protons in a reversal of the energized uptake process.  相似文献   

19.
Elevated atmospheric CO2 concentration ([CO2]) stimulates seed mass production in many species, but the extent of stimulation shows large variation among species. We examined (1) whether seed production is enhanced more in species with lower seed nitrogen concentrations, and (2) whether seed production is enhanced by elevated [CO2] when the plant uses more N for seed production. We grew 11 annuals in open top chambers that have different [CO2] conditions (ambient: 370 μmol mol−1, elevated: 700 μmol mol−1). Elevated [CO2] significantly increased seed production in six out of 11 species with a large interspecific variation (0.84–2.12, elevated/ambient [CO2]). Seed nitrogen concentration was not correlated with the enhancement of seed production by elevated [CO2]. The enhancement of seed production was strongly correlated with the enhancement of seed nitrogen per plant caused by increased N acquisition during the reproductive period. In particular, legume species tended to acquire more N and produced more seeds at elevated [CO2] than non-nitrogen fixing species. Elevated [CO2] little affected seed [N] in all species. We conclude that seed production is limited primarily by nitrogen availability and will be enhanced by elevated [CO2] only when the plant is able to increase nitrogen acquisition.  相似文献   

20.
Five strains of filamentous fungi belonging to the genera Mortierella and Cunninghamella were examined for the content of dihomo-γ-linolenic, arachidonic, eicosapentaenoic acids and prostaglandins (type E2 and F ). Prostaglandins were detected using an ELISA method in mycelia of all tested strains (range 50–4800 ng g−1 of PGE2 and 6–30 ng g−1 of PG F ). Several micro-organisms also produced prostaglandins in the culture medium (2·2–137·6 μg l−1 for PGE2 and 0·4–7·8 μg l−1 for PG F ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号