首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
M. Gophen 《Hydrobiologia》1984,113(1):249-258
Monthly averages of standing stock wet biomass of zooplankton in Lake Kinneret (Israel) varied between 11 and 76 g m–2 during 1969–1981, with the exception of two months. Averaged contributions of different groups were: Cladocera 58%, Copepoda 35% and Rotifera 7%. Total standing crop wet biomass is highest during January–June, averages varied between 35 and 50 g m–2, and decreases during summer–fall (23–36 g m–2). The winter biomass of Cladocera fluctuated between 22 and 35 g m–2 and dropped to a range of 9–23 g m–2 in summer, whereas copepod biomass varied very little around an average of 18 g (ww) m–2 with the exception of low values from April to June. The stock biomass of Rotifera is relatively high during winter floods season (December-March) whilst in summer it is very low.Young stages of fish in Lake Kinneret feed mostly on zooplankton and zoobenthic forms. The most abundant fish in the Kinneret ecosystem, Mirogrex terraesanctae terraesanctae, also feed on zooplankton at the adult stage throughout the year, and herbivorous fish consume zooplankton during the summer when lake plankton resources are limited.The summer ecosystem of Lake Kinneret is characterised as a steady state type, in which the impact of the zooplankton-chain is of great importance. Increase of predation pressure on zooplankton by fish can disequilibrate the balanced trophic relations existing between nannoplankton production and zooplankton grazing capacity. Such a situation can lead to organics accumulation as nannoplankton blooms, resulting in water quality deterioration. Management options aimed at preventing collapse of zooplankton populations are discussed.  相似文献   

2.
During the Lake Towada survey from April through October 1998, we measured primary production at shore and offshore stations, and calculated crustacean zooplankton production from samples collected at the offshore station. We then analyzed these data and compared them with commercial fishery data in order to discuss the energy flow in this lake where kokanee (Oncorhynchus nerka) fisheries are one of the main businesses. At all stations, primary production was relatively high: 150–300mgCm–2day–1 in April–mid-June and lower at ca. 100mgCm–2day–1 thereafter. The variation in primary productivity could largely be explained by multiple regression models that included phytoplankton biomass and ambient nutrient conditions as independent variables. Among zooplankton, rotifers had their peak abundance in May, before the crustacean zooplankton (Daphnia longispina, Bosmina longirostris, and Acanthodiaptomus pacificus) population was well established. D. longispina dominated the crustacean zooplankton community in terms of biomass and production; their production during the study period made up 80% of crustacean community production (19.6gdry-wtm–2), which was 40% of primary production during the survey. In July, when the abundance of D. longispina was particularly high, their daily production slightly exceeded daily primary production, which resulted in ca. 30% and 75% reduction in the amount of particulate organic carbon and chlorophyll a, respectively, during this period. The community ingestion rate of crustacean zooplankton, calculated from their daily production (D. longispina accounted for 90%) and the assumption that their gross production efficiency (K1) was 60%, could roughly explain this reduction of particulate matter, corroborating previous studies that the grazing of D. longispina can significantly improve the water transparency of this lake. The catch of kokanee and pond smelt (Hypomesus transpacificus nipponensis, another important fish in the lake) during the survey corresponded to 1.1% of crustacean community production, and corresponded to 0.45% of the primary production, which is one of the highest recorded values. Bearing in mind that D. longispina was the major food item of planktivorous fish such as kokanee and pond smelt, the present study suggests that the energy transfer from phytoplankton to zooplankton to fish is outstandingly efficient, compared with other aquatic ecosystems, when D. longispina dominates in the lake.  相似文献   

3.
The dynamics of crustacean zooplankton in the littoral and pelagic zones of four forest lakes having variable water qualities (colour range 130–340 mg Pt l−1, Secchi depth 70–160 cm) were studied. The biomass of zooplankton was higher in the littoral zone than in the pelagic zone only in the lake having the highest transparency. In the three other lakes, biomass was significantly higher in the pelagic zone than in the littoral zone. In the two lakes with highest transparency, the littoral biomass of cladocerans significantly followed the development of macrophyte vegetation, and cladoceran biomass reached the maximum value at the time of highest macrophyte coverage. In lakes with lowest transparency, littoral zooplankton biomass developed independently of macrophyte density and decreased when macrophyte beds were densest. The seasonal development of the littoral copepod biomass did not follow the development of macrophytes in any of the lakes. The mean size of cladocerans in the pelagic zone decreased with increasing Secchi depth of the lake, whereas in the littoral zone no such phenomenon was detected. Seasonally, when water transparency increased temporarily in two of the lakes, the mean size of cladocerans in the pelagic zone decreased steeply. For copepods, no relationship between water transparency and body size was observed. The results suggested that in humic lakes the importance of the littoral zone as a refuge decreases with decreasing transparency of the water and that low water transparency protects cladocerans from fish predation. All the observed between-lake differences could not be explained by fish predation, but were probably attributed to the presence of chaoborid larvae with variable densities. Feeding efficiency of chaoborids is not affected by visibility and thus they can obscure the relationship between water quality, fish density, and the structure of crustacean zooplankton assemblages. Handling editor: S. I. Dodson  相似文献   

4.
Predator-induced bottom-up effects in oligotrophic systems   总被引:1,自引:1,他引:0  
Five treatments (replication n=2) were applied to mesocosms in an oligotrophic lake (TP=6–10 µg 1-1) to assess the effects of fish on planktonic communities. The treatments were: (1) high fish (30 kg ha–1 Lepomis auritus, Linnaeus), (2) low fish (10 kg ha–1), (3) high removal of zooplankton, (4) low removal of zooplankton and (5) control. Total phosphorus, chlorophyll a, zooplankton biomass, and species richness decreased from high fish > low fish > control > low removal > high removal treatments. The fish treatments were dominated by crustacean zooplankton, while rotifers outnumbered the other zooplankters in the removal treatments. Calculations of zooplankton grazing rates suggested that clearance rates seldom exceeded 2% of the enclosure volume d–1 and were unlikely to have had much influence on phytoplankton biomass. Calculations from a phosphorus bioenergetics model revealed that when fish were present, their excretion rates were higher than the rates ascribed to zooplankton. Diet analysis showed that the fish derived most of their energy from the benthos and periphyton, and that fish excretion and egestion made significant contributions to the very oligotrophic pelagic phosphorus pool. In the absence of fish, zooplankton excretion was highest in the control treatments and lowest in the zooplankton removal treatments. Our results suggest that in oligotrophic systems, planktivorous fish can be significant sources of phosphorus and that fish and zooplankton induced nutrient cycling have significant impacts on planktonic community structure.  相似文献   

5.
The depth distribution of the common bully, Gobiomorphus cotidianus, a small benthic forage fish, was measured by trapping at set depths from 0–70m in three large oligotrophic lakes, including one where inorganic sediment from a glacially-fed river produces turbid conditions. Bullies occurred at all depths from 0.5–70m in the clear lakes, but none were present below 25m in the turbid lake. Two groups of bullies were present in the clear lakes; a high-density, littoral stock at depths of 0.5–25m, and a low-density, profundal stock at depths of 30–70m. These groups were further distinguished by differing buoyancy requirements and feeding habits. The swimbladders of littoral bullies contained gas, but those of the profundal bullies, which fed more than littoral bullies by both day and night, did not. The variation in mean CPUE with depth within the littoral zone was not related to water temperature, oxygen concentration, or conductivity. Nor was it related to a reduction in light levels or to reduced water transparency caused by increased turbidity. It may therefore be controlled by biotic factors. The absence of a profundal stock below the littoral zone in the turbid lake indicates that the settlement of fines from turbid inputs may affect bully abundance in deeper waters. As conventional measures of the abundance of benthic fish in lakes are often restricted to littoral habitats, and do not reflect changes in abundance with depth, an index of overall abundance based on depth distribution was developed to allow comparisons between lakes.  相似文献   

6.
The drift of zooplankton (rotifers, cladocerans, cyclopoid copepods) and microscopical zoobenthos (mainly bdelloid rotifers and small chironomid larvae) was investigated by filtering samples of river water. The number of drifting benthic rotifers varied between 1 000 and 6 000 ind. m–3 in the lake inlet, and between 30 and 500 ind. m–3 in the lake outlet, without any seasonal trend. The number of drifting insect larvae was approx. equal in the lake inlet and outlet, with a maximum in summer (250–300 ind. m–3) and minimum in winter (ca. 10 ind. m–3). Increasing water flow resulted in an increasing number of drifting zoobenthos. Downstream from the lake, the number of drifting benthic rotifers was increasing from approx. 300 ind. m–3 in the outlet to 6 500 ind. m–3 3.4 km downstream, while the number of insect larvae was ca. 100 ind. m–3 in the outlet and leveled off at approx. 300 ind. m–3 after 200 m. The number of drifting zooplankton in the lake outlet varied between 20 and 2 000 ind. m–3 for crustaceans, and between 300 and 20 000 ind. m–3 for rotifers, both with a maximum in late summer/autumn and a minimum in winter. The number of drifting zooplankton decreased by some 45% in the first 200 m from the lake outlet, but some zooplankton was still found in the drift 3.4 km downstream. The largest species was removed first from the drift. The diurnal variation in the number of drifting zooplankton in lake outlets appear to be related to the vertical migration in the lake, i.e. the largest number drifting when most animals are in the upper water layers.Contribution from the Voss Project, University of OsloContribution from the Voss Project, University of Oslo  相似文献   

7.
Synopsis Slimy sculpins (Cottus cognatus) were caught in the littoral region of Toolik Lake, an arctic lake. These sculpins grew slower and lived longer (71 mm at 8+ years) than more southerly populations. Sculpin distribution along the slope of the rocky littoral zone was greatest at the 3.5 m depth and coincided with the rock-mud interface. The hypothesis that this preferred area provided both increased prey and reduced predation was advanced. Yearly production estimate of littoral sculpins was 0.40 g · m–2 · yr–1 with a P/B ratio of 0.36. This is considerably less than estimates for more southerly populations of the same species.  相似文献   

8.
Kane  Kanoelani  Pomory  Christopher M. 《Hydrobiologia》2001,444(1-3):213-215
Survival of adult female copepods and survival of eggs to 1-week-old larvae were assessed following exposure times of 0, 15, 30, 45, 60 and 90 min of UV-B radiation (450 W cm–2). An increase in both adult and larval mortality occurred between the 45 min (12,150 J m–2 unweighted) and 60 min (16200 J m–2 unweighted) treatment levels of radiation. At 90 min (24300 J m–2 unweighted), all individuals died.  相似文献   

9.
Hessen  Dag O.  Faafeng  Bj&#;rn A.  Brettum  P&#;l 《Hydrobiologia》2003,491(1-3):167-175
A survey on phytoplankton:zooplankton biomass ratios was performed in 342 Norwegian lakes, covering a wide range in lake size and productivity (total phosphorus: 3–246 g l–1), but with most localities being oligo- to mesotrophic. Mean phytoplankton biomass was 88 g C l–1, yet with the majority below 50 g C l–1and a median of 25 g C l–1. Total zooplankton biomass displayed a mean and median of 37 and 26 g C l–1, respectively. Cladocerans were by far the dominant group, making up a median of almost 60% of total zooplankton biomass. Total zooplankton biomass as well as that of major aggregated metazoan taxa (cladocerans, calanoid copepods, cyclopoid copepods and rotifers) all showed a positive, but weak correlation with total phytoplankton biomass. These weak correlations suggest that algal biomass per se is a poor predictor of zooplankton biomass. An average phyto-:zooplankton biomass ratio (C:C) of 2.8 (SD±4.7) was found. 30% of the lakes had a phyto-:zooplankton biomass ratio below unity. While there was no correlation between the phyto-:zooplankton biomass ratio with increasing productivity in terms of P concentration, there was a higher biomass ratio in lakes with high fish predation pressure. The low ratio of phyto-:zooplankton biomass suggest major requirements from non-algal sources of C in the zooplankton diet. The need for dietary subsidizing is also supported by the fact that more than 75% of the lakes had algal biomass less than the estimated threshold for net positive growth of zooplankton, although it should be kept in mind that a high share of picoplankton would imply an underestimation of autotroph biomass in these lakes. Since the C-deficiency apparently is most pronounced in oligotrophic systems, it contradicts the view that the detritus pathways plays a predominant role in highly productive systems only, but while the source of detritus probably is mostly of autochthonous origin in eutrophic lakes, allochthonous detritus will be more important in oligotrophic systems.  相似文献   

10.
About 650 zooplankton samples were collected from Lake Inarijärvi in 1977–1979 from the littoral and pelagial zones of the lake. One hundred and twenty-three zooplankton taxa were found and most of them can be considered euplanktonic.The most important species were Holopedium gibberum, Daphnia cristata, Cyclops spp. and Eudiaptomus spp. Mean pelagial zooplankton biomass was 0.29 g m–3 in the 0–5 m depth zone, 0.17 g m–3 in 5–10 m and 0.11 g m–3 in 10–20 m.The zooplankton biomass at a sandy shore was about 0.09 g m–3, at a stony shore 0.05 g m–3 and at a vegetated shore 0.76 g m–3. About 70% of the whole zooplankton production consisted of crustaceans.The sum of herbivore and carnivore zooplankton production in the pelagial area during the summer was 210–330 kg ha–1 × 3 months.  相似文献   

11.
The surface elevation of Mono Lake, California, rose 2 m and mixed-layer salinities declined about 5 g kg–1 during the 3 years (1995–1997) following the decision to restrict water diversions out of the Mono Basin. Abundant (18000 m–2) Hexarthra jenkinae de Beauchamp were noted in pelagic samples in October 1997 after three decades of absence or very low abundance. Abundance subsequently increased to 100000 m–2 in December 1997 before declining to low numbers through 1998 and 1999. The re-appearance of Branchionus plicatilis Müller in pelagic samples occurred in September 1998. B. plicatilis areal abundance increased to 15000 m–2 in October–December of both 1998 and 1999 but was low throughout the rest of the year. Both rotifers were noted in nearshore ponds, but were only abundant in those with salinities below 53 g kg–1. During 1998–1999 when the salinities of the upper water column were 73–75 g kg–1, less saline shoreline habitats may have been seeding the offshore rotifer populations.  相似文献   

12.
In a survey of eight lake systems located in north-central Florida, total zooplankton abundance showed a strong positive correlation (r2=0.87, a=0.01) with trophic state. Zooplankton abundance averaged 1.0 × 105 organisms · m–2 in oligotrophic systems and up to 8.2 × 105 organisms · m–2 in the eutrophic systems. Seasonal variations in total abundance were greatest in the eutrophic lakes where rotifers dominated and periodically produced sharp population peaks (approaching 2.0 × 106· m–2). In contrast, the more oligotrophic systems had relatively stable levels of total abundance and were dominated by copepods. Diversities of the major taxa in the lakes were variable with one to three species of copepods, zero to four species of cladocera, and two to seven species of rotifers dominant at any one time. Planktonic cladoceran communities were often composed of only one or two species. Low cladocera diversity in these subtropical systems was suggestive of increased predation pressure on this group of crustaceans. A comparison of the total crustacean abundance in the Florida systems to those of some of the Great Lakes indicated that lower standing crops of crustacean zooplankton in the Florida lakes may be a response to both predation and temperature.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.  相似文献   

13.
The species diversity, abundance, and biomass of zooplankton in the pelagic and coastal zones of Lake Kandrykul were studied in 2007–2012. The community was dominated by large Cladocera. The maximum abundance of zooplankton was observed in the anomalously warm 2010. In July, the highest abundance of zooplankton (1300 thousand ind./m3) was recorded near the southern coast in stands of mare′s-tail Hippurus vulgaris; that of biomass (9 g/m3) was found near the northern shore in stands of narrow-leaved cattail Typha angustifolia. The lowest values of the number and biomass of aquatic invertebrates were observed in the pelagial (32 thousand ind./m3 and 0.1 g/m3) and along the M5 motorway stretching aside the northeastern coast (188 thousand ind./m3 and 0.5 g/m3). The Shannon index value (1.3–2.1) corresponded to the meso-eutrophic type of water bodies. In 2007, according to the Mjaemets trophicity index (E), the lake ecosystem was oligotrophic (E 0.11); in 2010–2012 it was mesotrophic (in the pelagial, E value was 0.54; in the open littoral it was 0.76) or weakly eutrophic (E values of protected littoral were 1.52). The estimates of water trophy as assessed by zooplankton are close to those assessed by the number and biomass of phytoplankton (meso-eutrophic type). The rapid eutrophication of the lake ecosystem was revealed. In 6 years the trophic status of the lake changed from oligo-mesotrophic to meso-eutrophic.  相似文献   

14.
Juta Haberman 《Hydrobiologia》1996,338(1-3):113-123
L. Peipsi is one of the richest fish lakes in Europe. Planktivorous smelt dominates in the fish fauna. The abundance of zooplankton fluctuates between 43 600–2241 500 ind m–3, with the average 974 000 ind m–3, biomass ranges from 0,09–3,69 g m–3, with the average 1,86 g m–3. Since the 1960s the abundance of rotifers has risen considerably while the mean zooplankter weight (B/N) has decreased from 0.005 mg to 0.004 mg. Zooplankton production (herbivores 20.6, predators 1.8, whole zooplankton community 22.4 g C m–2 per period between May and October) can be considered high. Predatory zooplankton eats on an average 50% of the production of herbivorous zooplankton; about 50% of the whole zooplankton production (PFilt + Pred) reaches fishes. The production of herbivorous zooplankton constitutes 10.1% of primary production. This ratio indicates a direct relationship between zoo- and phytoplankton in the food chain; the detrital food chain seems of little importance. About 6% of phytoplankton energy reaches fishes. The transformation of energy in the food web is efficient. On the basis of zooplankton L. Peipsi can be considered a moderately eutrophic or meso-eutrophic lake.  相似文献   

15.
We used ultrasonic telemetry to determine the movement directions and movement rates of leopard sharks, Triakis semifasciata, in Tomales Bay, California. To analyze tide and time of day effects, we surgically implanted transmitters in the peritoneal cavities of one male and five female leopard sharks, which we located during summer for three to five sampling sessions lasting 12 to 24h each. All leopard sharks showed strong movement direction patterns with tide. During incoming tides, sharks moved significantly (p<0.0001) towards the inner bay, apparently to exploit the extensive inner bay muddy littoral zones' food resources. On outgoing tides, sharks showed significant (p<0.0001) movements towards the outer bay. During high tide, there was no discernible pattern to their movements (p=0.092). Shark movement rates were significantly (p<0.0001) greater during dark periods (mean±SE: 10.5±1.0m min–1), compared with fully lighted ones (6.7±0.5m min–1). Movement rates of longer sharks tended to be greater than those of shorter ones (range means±SE: 5.8±0.6m min–1 for the 91cm shark, to 12.8±1.6m min–1 for the 119cm shark), but the leopard sharks' overall mean movement rate (8.1±0.5m min–1) was slower than other (more pelagic) sharks.  相似文献   

16.
Aquatic macrophytes produce considerable structural variation within the littoral zone and as a result the vegetation provides refuge to prey communities by hindering predator foraging activities. The behavior of planktivorous fish Pseudorasbora parva (Cyprinidae) and their zooplankton prey Daphnia pulex were quantified in a series of laboratory experiments with artificial vegetation at densities of 0, 350, 700, 1400, 2100 and 2800 stemsm–2. Swimming speeds and foraging rates of the fish were recorded at different prey densities for all stem densities. The foraging efficiency of P. parva decreased significantly with increasing habitat complexity. This decline in feeding efficiency was related to two factors: submerged vegetation impeded swimming behavior and obstructed sight while foraging. This study separated the effects of swimming speed variation and of visual impairment, both due to stems, that led to reduced prey–predator encounters and examined how the reduction of the visual field volume may be predicted using a random encounter model.  相似文献   

17.
The seasonal distribution of metazooplankton and large-sized ciliates was studied in four ponds of different salinity in the solar salterns of Sfax (Tunisia). Total zooplankton abundance varied from 1 × 103 to 4.7 × 106 ind m–3. Salinity had a negative effect on the abundance of copepods and rotifers which were absent in the pond with the highest salt concentration (180) in which the number of taxa was low and Artemia or the ciliate Fabrea largely dominated the zooplankton community. Temperature and the presence of Dunaliella salina as prey appeared as key factors in controlling the abundance of Artemia, while organic detritus appeared as important in the diet of Fabrea. Change in zooplankton species composition along the hypersaline gradient (40–90) was primarily related to salinity. However, our data suggest the importance of both the abundance and composition of food in the spatial and temporal variations of some zooplankton species.  相似文献   

18.
Blumenshine  S.C.  Hambright  K.D. 《Hydrobiologia》2003,491(1-3):347-356
Limnologists have long recognized the importance of predation in freshwater communities. The majority of study of predator effects has involved vertebrate predators, with emphasis on planktivorous fish. Documented effects of planktivorous fish have been so dramatic that manipulations of their populations are seen by many as potential tools in lake management. However, the success of such manipulations is often less than desired due to the ubiquitous complexity of food webs and the pervasiveness of compensatory responses to food web manipulation. Recently, enormous effort has been applied to the Lake Kinneret pelagic food web in effort to reduced the abundance of the planktivorous Kinneret bleak Acanthobrama terraesanctae and thereby increase the biomass of herbivorous zooplankton in the hopes of increasing water clarity. We compared potential predation pressure on Lake Kinneret herbivorous zooplankton by bleak and the other major zooplankton predators in the lake, the cyclopoid copepods Mesocyclops ogunnus and Thermocyclops dybowskii. We found that, despite having much lower biomass, cyclopoid copepods accounted for a greater portion of the predation mortality on herbivorous zooplankton than bleak. Our results suggest that reductions in predation pressure by bleak will not yield subsequent increases in herbivorous zooplankton biomass. Rather, reductions in bleak predation pressure may allow for increases in cyclopoid copepod abundance and thereby a net increase in predation pressure on herbivorous zooplankton.  相似文献   

19.
The seasonal variation in primary production, individual numbers, and biomass of phyto- and zooplankton was studied in the River Danube in 1981. The secondary production of two dominant zooplankton species (Bosmina longirostris and Acanthocyclops robustus) was also estimated. In the growing season (April–Sept.) individual numbers dry weights and chlorophyll a contents of phytoplankton ranged between 30–90 × 106 individuals, l–1, 3–12 mg l–1, and 50–170 µg l–1, respectively. Species of Thalassiosiraceae (Bacillariophyta) dominated in the phytoplankton with a subdominance of Chlorococcales in summer. Individual numbers and dry weights of crustacean zooplankton ranged between 1400–6500 individuals m–3, and 1.2–12 mg m–3, respectively. The daily mean gross primary production was 970 mg C m–3 d–1, and the net production was 660 mg C m–3 d–1. Acanthocyclops robustus populations produced 0.2 mg C m–3 d–1 as an average, and Bosmina longirostris populations 0.07 mg C m–3 d–1. The ecological efficiency between phytoplankton and crustacean zooplankton was 0.03%.  相似文献   

20.
The mysid shrimp Neomysis integer is a common invertebrate predator in brackish waters of Western Europe and is thought to play a central role in the food web owing to its predation on zooplankton. Neomysis distribution and abundance were investigated for 3 years in brackish, shallow and hypertrophic Lake Ferring (surface area: 3.2 km2, mean depth: 1.4 m, salinity: 3–6, total P: 0.29–0.78 mg P l-1, Secchi depth: 0.14–0.22 m). Mean summer abundance of Neomysis varied from 53 to 882 ind. m-2. Neomysis density within the lake was relatively uniform and not related to sediment type, but increased with increasing depth. The high abundance of Neomysis is considered to reflect a fish stock almost completely dominated by small-sized fish species (mainly three-spined stickleback, Gasterosteus aculeatus). Three-spined stickleback density was high and catch per unit effort ranged between 30 and 80 per gill net. Stomach analyses showed that the sticklebacks preyed on Neomysis, but preferred specimens smaller than 3–4 mm, and only occasionally consumed those larger than 5–7 mm. In summer, between 33 and 67% of the Neomysis ingested by sticklebacks were smaller than 3 mm, while in the lake as a whole, only 5–14% were smaller than 3 mm. The periods when Neomysis is vulnerable to stickleback predation are restricted to a few weeks in late May and late July, when the new generations emerge. Sticklebacks therefore have a limited capacity for controlling large Neomysis, including gravid females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号