首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diterpene forskolin has been reported to activate adenylate cyclase in a manner consistent with an interaction at the catalytic unit. However, some of its actions are more consistent with an interaction at the coupling unit that links the hormone receptor to the adenylate cyclase activity. This report adds support to the latter possibility. Under conditions that lead to stimulation of adenylate cyclase in turkey erythrocyte membranes by GTP, forskolin also becomes more active. Additional evidence to support an influence of forskolin upon adenylate cyclase via the GTP-coupling protein N includes the following: (i) forskolin, at submaximal concentrations, leads to enhanced sensitivity and responsiveness of isoproterenol-dependent adenylate cyclase activity in turkey erythrocyte membranes; (ii) under specified conditions, the nucleotide GDP, an inhibitor of the stimulating nucleotide GTP and its analog, guanyl imidodiphosphate (Gpp(NH)p), also markedly inhibits the action of forskolin; (iii) both Gpp(NH)p and forskolin are associated with a decrease in agonist affinity for the beta-adrenergic receptor. However, actions of forskolin in the turkey erythrocyte are not identical to those of GTP: (i) forskolin is never as potent as Gpp(NH)p in activating adenylate cyclase; (ii) the magnitude of synergism between isoproterenol and forskolin is not equal to that observed with isoproterenol and Gpp(NH)p; (iii) at high concentrations, forskolin inhibits antagonist binding to the beta-receptor. Forskolin appears to have several sites of action in the turkey erythrocyte membrane, including an influence upon the adenylate cyclase regulatory protein N.  相似文献   

2.
The mechanisms by which forskolin stimulates adenylate cyclase activity in turkey erythrocyte membranes and is influenced by manganese and Gpp(NH)p were studied. Forskolin-dependent adenylate cyclase activity in particulate turkey erythrocyte membranes is enhanced following preincubation of membranes with isoproterenol and GMP (cleared membranes). In contrast, solubilization of turkey erythrocyte membranes, previously cleared, renders them relatively refractory to forskolin but not to Gpp(NH)p. Whereas adenylate cyclase activity due to the simultaneous presence of forskolin and Mn2+ in particulate turkey erythrocyte membranes is additive, their copresence becomes synergistic after solubilization. The apparent Kact for forskolin activation of adenylate cyclase is not influenced by clearance or by the presence of Mn2+ in particulate turkey erythrocyte membranes. Following solubilization, the Vmax for forskolin-dependent adenylate cyclase activation determined in the presence of Mn2+ is also independent of clearance. Forskolin activation of turkey erythrocyte adenylate cyclase appears to be influenced at sites in addition to the catalytic unit.  相似文献   

3.
This study probes the structure and mutual interactions of the components of adenylate cyclase. We use a complementation assay which involves the addition of an adenylate cyclase-related guanine nucleotide-binding protein component to a membrane lacking this component to measure guanine nucleotide-stimulated-adenylate cyclase. Instead of using detergent extracts we were able to achieve full complementation by mixing intact membrane preparations in the presence of the nucleotide component. Of particular interest was the human erythrocyte membrane which contains very low amounts of catalytic activity and no measurable beta-adrenergic receptor but has normal amounts of the nucleotide component. This component appears to be the same, by several criteria, as components found in pigeon and turkey erythrocytes and in rat liver plasma membrane. The component confers Gpp(NH)p, fluoride, and GTP stimulation of adenylate cyclase along a single reconstitution curve. It is labeled with NAD by cholera toxin, and has an apparent molecular weight of 39 000 upon sodium dodecyl sulfate gel electrophoresis. The presence of the nucleotide unit in the virtual absence of the active catalytic unit allowed us to determine those properties intrinsic to each unit and those conferred by the association of the units. The nucleotide component binds guanine nucleotides weakly in the human erythrocyte membrane, yet produces persistent activation of adenylate cyclase and tight binding (of Gpp(NH)p) upon combination with the catalytic unit. Treatment of the human erythrocyte membrane with N-ethylmaleimide causes a simultaneous diminution in both Gpp(NH)p and fluoride stimulation in reconstituted activities, suggesting that both activities are conferred by the same component.  相似文献   

4.
Effects of guanine nucleotides on the adenylate cyclase activity of thyroid plasma membranes were investigated by monitoring metabolism of the radiolabeled nucleotides by thin-layer chromatography (TLC). When ATP was used as substrate with a nucleotide-regeneratign system, TSH stimulated the adenylate cyclase activity in the absence of exogenous guanine nucleotide. Addition of GTP and GDP equally enhanced the TSH stimulation. Effects of GTP and GDP were indistinguishable in regard to their inhibitory effects on NaF-stimulated activities. The results from TLC suggested that GDP could be converted to GTP by a nucleotide-regenerating system. Even in the absence of nucleotide-regenerating system, addition of GDP to the adenylate cyclase assay mixture int he parallel decrease in ATP levels and formation of GTP indicating that thyroid plasma membrane preparatiosn possessed a transphosphorylating activity. When an ATP analog, App[NH]p, was used as substrate without a nucleotide-regenerating system, no conversion of GDP to GTP was observed. Under such conditions, TSH did not stimulate the adenylate cyclase activity unless exogenous GTP or Gpp[NH]p was added. GDP no longer supported TSH stimulation and caused a slight decrease in the activity. GDP was less inhibitory than Gpp(NH)p to the NaF-stimulated adenylate cyclase activity. These results suggest: (1) TSH stimulation of thyroid adenylate cyclase is absolutely dependent on the regulatory nucleotides. (2) In contrst to GTP, GDP cannot support the coupling of the receptor-TSH complex to the catalytic componenet of adenylate cyclase. (3) The nucleotide regulatory site is more inhibitory to the stimulation of the enzyme by NaF when occupied by Gpp[NH]p than GDP.  相似文献   

5.
Tubulin, the primary constituent of microtubules, is a GTP-binding proteins with structural similarities to other GTP-binding proteins. Whereas microtubules have been implicated as modulators of the adenylate cyclase system, the mechanism of this regulation has been elusive. Tubulin, polymerized with the hydrolysis-resistant GTP analog, 5'-guanylylimidodiphosphate [Gpp(NH)p], can promote inhibition of synaptic membrane adenylate cyclase which persists subsequent to washing. Tubulin with Gpp(NH)p bound was slightly less potent than free Gpp(NH)p in the inhibition of adenylate cyclase, but tubulin without nucleotide bound had no effect on the enzyme. A GTP-binding protein from the rod outer segment (transducin), with Gpp(NH)p bound, was also without effect on adenylate cyclase. Tubulin (regardless of the nucleotide bound to it) did not alter the activity of the adenylate cyclase catalytic unit directly. When tubulin was polymerized with the hydrolysis-resistant photoaffinity GTP analog, [32P]P3(4-azidoanilido)-P1-5'-GTP ([32P]AAGTP), and this protein was added to synaptic membranes, AAGTP was transferred from tubulin to the inhibitory GTP-binding protein, Gi. This transfer was blocked by prior incubation of the membranes with Gpp(NH)p or covalent binding of AAGTP to tubulin prior to exposure of that tubulin to membranes. Incubation of membranes with Gpp(NH)p subsequent to incubation with tubulin-AAGTP results in a decrease in AAGTP bound to Gi and a compensatory increase in AAGTP bound to the stimulatory GTP-binding protein, Gs. Likewise, persistent inhibition of adenylate cyclase by tubulin-Gpp(NH)p could be overridden by the inclusion of 100 microM Gpp(NH)p in the assay inhibition. Whereas Gpp(NH)p promotes persistent inhibition of synaptic membrane adenylate cyclase without incubation at elevated temperatures, tubulin [with AAGTP or Gpp(NH)p bound] requires 30 s incubation at 23 degrees C to effect adenylate cyclase inhibition. Photoaffinity experiments yield parallel results. These data are consistent with synaptic membrane tubulin regulating neuronal adenylate cyclase by transferring GTP to Gi and, subsequently, to Gs.  相似文献   

6.
Effects of guanine nucleotides on the adenylate cyclase activity of thyroid plasma membranes were investigated by monitoring metabolism of the radiolabeled nucleotides by thin-layer chromatography (TLC). When ATP was used as substrate with a nucleotide-regenerating system, TSH stimulated the adenylate cyclase activity in the absence of exogenous guanine nucleotide. Addition of GTP or GDP equally enhanced the TSH stimulation. Effects of GTP and GDP were indistinguishable in regard to their inhibitory effects on NaF-stimulated activities. The results from TLC suggested that GDP could be converted to GTP by a nucleotide-regenerating system. Even in the absence of a nucleotide-regeneration system, addition of GDP to the adenylate cyclase assay mixture resulted in the parallel decrease in ATP levels and formation of GTP indicating that thyroid plasma membrane preparations possessed a transphosphorylating activity. When an ATP analog, App[NH]p, was used as substrate without a nucleotide-regenerating system, no conversion of GDP to GTP was observed. Under such conditions, TSH did not stimulate the adenylate cyclase activity unless exogenous GTP or Gpp[NH]p was added. GDP no longer supported TSH stimulation and caused a slight decrease in the activity. GDP was less inhibitory than Gpp(NH)p to the NaF-stimulated adenylate cyclase activity. These results suggest: (1) TSH stimulation of thyroid adenylate cyclase is absolutely dependent on the regulatory nucleotides. (2) In contrast to GTP, GDP cannot support the coupling of the receptor-TSH complex to the catalytic component of adenylate cyclase. (3) The nucleotide regulatory site is more inhibitory to the stimulation of the enzyme by NaF when occupied by Gpp[NH]p than GDP.  相似文献   

7.
The activation of bovine thyroid adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) by Gpp(NH)p has been studied using steady-state kinetic methods. This activation is complex and may be characterized by two Gpp(NH)p binding sites of different affinities with measured constants: Ka1 = 0.1 micro M and Ka2 = 2.9 micro M. GDP beta S does not completely inhibit the Gpp(NH)p activation: analysis of the data is consistent with a single GDP beta S inhibitory site which is competitive with the weaker Gpp(NH)p site. Guanine nucleotide effects upon F- activation of adenylate cyclase have been studied. When App(NH)p is the substrate, 10 micro M GTP along with 10 mM NaF gives higher activity than NaF alone, while GDP together with NaF inhibits the activity by 50% relative to NaF. These features are not observed when the complex is assayed with ATP in the presence of a nucleotide regenerating system or when analogs Gpp)NH)p or GDP beta S are used along with NaF. These effects were studied in three other membrane systems using App(NH)p as substrate: rat liver, rat ovary and turkey erythrocyte. No consistent pattern of guanine nucleotide effects upon fluoride activation could be observed in the different membrane preparations. Previous experiments showed that the size of soluble thyroid adenylate cyclase changed whether membranes were preincubated with Gpp(NH)p or NaF. This size change roughly corresponded to the molecular weight of the nucleotide regulatory protein. This finding, coupled with the present data, suggests that two guanine nucleotide binding sites may be involved in regulating thyroid cyclase and that these sites may be on different protein chains.  相似文献   

8.
Functional interaction of the inhibitory GTP regulatory component (Ni) with the adenylate cyclase catalytic subunit has not previously been demonstrated after detergent solubilization. The present report describes a sodium cholate-solubilized preparation of rat cerebral cortical membrane adenylate cyclase that retains guanine nucleotide-mediated inhibition of activity. Methods of membrane preparation, cholate extraction, and assay conditions were manipulated such that guanosine-5'-(beta-gamma-imido)triphosphate [Gpp(NH)p] inhibited basal activity 40-60%. The rank order of potency among various GTP analogs was similar in cholate extracts and in membranes: guanosine-5'-0-(3-thiotriphosphate) greater than Gpp(NH)p greater than GTP. Inclusion of 0.1 mM EGTA reduced basal activity 70-90% and abolished Gpp(NH)p inhibition of basal activity in both membranes and cholate extracts. Forskolin-stimulated activity was also inhibited by Gpp(NH)p. Treatment of either membranes or cholate extracts with N-ethylmaleimide abolished Gpp(NH)p inhibition. Gel filtration of the cholate extract over a Sepharose 6B column in 0.1% Lubrol PX partially resolved the adenylate cyclase components. However, Gpp(NH)p inhibition of basal activity (60% of the control) was maintained in select column fractions. Sucrose gradient centrifugation totally resolved the catalytic subunit from both functional Ni and stimulatory GTP regulatory component (Ns) activities. The sedimentation of functional Ni activity was detected by assaying the ability of sucrose gradient fractions to confer Gpp(NH)p inhibition of the resolved catalytic activity. Labeling of gradient or column fractions with pertussis toxin and [32P]NAD revealed that both the 39,000- and 41,000-dalton substrates comigrated with the functional Ni activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Continuous treatment (1-10 days) of rats with desipramine (10 mg/kg, twice per day) caused desensitization of the beta-adrenergic receptor-coupled adenylate cyclase system of cerebral cortical membranes. The decrease in the isoproterenol-stimulated adenylate cyclase activity was more rapid and greater than the decrease in the number of beta-adrenergic receptors in membranes during treatment of the membrane donor rats with desipramine, indicating that the desensitization occurring at an early stage of the treatment was not accounted for solely by the decrease in the receptor number. Neither the guanine nucleotide regulatory protein (N) nor the adenylate cyclase catalyst was impaired by the drug treatment, since there was no decrease in the cyclase activity measured in the presence or absence of GTP, guanyl-5'-yl-beta-gamma-imidodiphosphate [Gpp(NH)p], NaF, or forskolin. Gpp(NH)p-induced activation of membrane adenylate cyclase developed with a lag time of a few minutes in membranes from control or drug-treated rats. The lag was shortened by the addition of isoproterenol, indicating that beta-receptors were coupled to N in such a manner as to facilitate the exchange of added Gpp(NH)p with endogenous GDP on N. This effect of isoproterenol rapidly decreased during the drug treatment of rats. Thus, functional uncoupling of the N protein from receptors was responsible for early development of desensitization of beta-adrenergic receptor-mediated adenylate cyclase in the cerebral cortex during desipramine therapy.  相似文献   

10.
Forskolin activated adenylate cyclase of purified rat adipocyte membranes in the absence of exogenous guanine nucleotides. Guanyl-5'-yl imidodiphosphate (Gpp(NH)p) inhibited the forskolin-activated cyclase immediately upon addition of the nucleotide at concentrations too low to activate adenylate cyclase (10(-9) to 10(-7) M). Inhibition seen with a very high concentration of Gpp(NH)p (10(-4) M) lasted for 3-4 min and was followed by an increase in the synthetic rate which remained constant for at least 15 min. The length of the transient inhibition did not vary with forskolin concentrations above 0.05 microM but low Gpp(NH)p (10(-8) M) exhibited a lengthened (6-7 min) inhibitory phase. The transient inhibitory effects of Gpp(NH)p were eliminated by 10(-7) M isoproterenol, high (40 mM) Mg2+, or preincubation with Gpp(NH)p in the absence of forskolin. While forskolin stimulated fat cell cyclase in the presence of Mn2+, this ion blocked the inhibitory effects of Gpp(NH)p. The well documented inhibitory effects of GTP on the fat cell adenylate cyclase system were also observed in the presence of forskolin. However, the inhibition by GTP is not transitory. These findings indicate that Gpp(NH)p regulation of forskolin-stimulated cyclase has at least two components: 1) an inhibitory component which acts through an undetermined mechanism and which acts immediately to decrease cyclase activity; and 2) an activating component which modulates the inhibited cyclase activity through the guanine nucleotide regulatory protein.  相似文献   

11.
Summary The relationships between membrane fluidity as induced by drug addition and the stimulation of adenylate cyclase by hormones (mainly catecholamines), GTP, Gpp(NH)p and NaF are reviewed. In particular, the data corresponding to pigeon erythrocyte membranes are reviewed and compared with other data published in the literature. A brief summary of the theories involved in fluidity measurements and their significance at the molecular level is also given for anisotropy of fluorescence and electron spin resonance.One of the conclusions is that the cationic drugs and neutral alcohols by perturbing preferentially the inner half-layer of the bilayer induced in pigeon erythrocyte membrane correlated multiphasic changes on fluidity and adenylate cyclase activity.This and other experimental data concerning the regulation of the adenylate cyclase are discussed in regard to a new interpretation of cyclase stimulation: the repressor hypothesis. In cell membrane the catalytic unit C is repressed by its association with a repressor complex made of the hormone receptor R and the regulatory protein N. The activation of cyclase activity is the dissociation of the catalytic unit C from the repressor complex R.N according to the equilibrium: R.N.C (inactive) R.N + C (active). Hormones, metal ions (magnesium), and nucleotides (GTP) are the allosteric ligands which shift this equilibrium towards the dissociation. state with the liberation of the active form, membrane-bound, C unit. Gpp(NH)p, fluoride and forskolin will also shift the equilibrium toward the right. GDP and free receptors favour the associated repressed state of the system.  相似文献   

12.
Expression of activation of rat liver adenylate cyclase by the A1 peptide of cholera toxin and NAD is dependent on GTP. The nucleotide is effective either when added to the assay medium or during toxin (and NAD) treatment. Toxin treatment increases the Vmax for activation by GTP and the effect of GTP persists in toxin-treated membranes, a property seen in control membranes only with non-hydrolyzable analogs of GTP such as Gpp(NH)p. These observations could be explained by a recent report that cholera toxin acts to inhibit a GTPase associated with denylate cyclase. However, we have observed that one of the major effects of the toxin is to decrease the affinity of guanine nucleotides for the processes involved in the activation of adenylate cyclase and in the regulation of the binding of glucagon to its receptor. Moreover, the absence of lag time in the activation of adenylate cyclase by GTP, in contrast to by Gpp(NH)p, and the markedly reduced fluoride action after toxin treatment suggest that GTPase inhibition may not be the only action of cholera toxin on the adenylate cyclase system. We believe that the multiple effects of toxin action is a reflection of the recently revealed complexity of the regulation of adenylate cyclase by guanine nucleotides.  相似文献   

13.
The adenylate cyclase activity of a participate preparation of rat cerebral cortex is composed of at least two contributing components, one of which requires a Ca2+-dependent regulator protein (CDR) for activity (Brostrom, C. O., Brostrom, M. A., and Wolff, D. J. (1977) J. Biol. Chem.252, 5677–5685). Each of these components of the activity was activated by GTP and its synthetic analog, 5-guanylylimidodiphosphate (Gpp(NH)p). The component of the adenylate cyclase activity which did not respond to CDR (CDR-independent activity) was stimulated approximately 60% by 100 μm GTP and 3.5-fold by 100 μm Gpp(NH)p. Concentrations of GTP required for maximal activation of the CDR-dependent adenylate cyclase component decreased as CDR concentrations in the assay were increased. Similarly, GTP pr Gpp(NH)p lowered the concentration of CDR required to produce half-maximal activation of this enzyme form. At saturating CDR concentrations, however, increases in activity were not observed with the addition of these nucleotides. The CDR-dependent component responded biphasically (activation followed by inhibition) to increasing free Ca2+ concentrations; both phases of this response occurred at lower free Ca2+ concentrations with GTP present in the assay. The concentration of chlorpromazine which inhibited activation of adenylate cyclase by CDR was elevated when GTP was present. The CDR-dependent form of activity, which is stabilized by CDR to thermal inactivation, was also stabilized by Gpp(NH)p. The increase in stability produced by Gpp(NH)p did not require the presence of CDR, and stabilization with both Gpp(NH)p and CDR was greater than that obtained with either Gpp(NH)p or CDR alone.  相似文献   

14.
To test the hypothesis that guanine nucleotides activate adenylate cyclase by a covalent mechanism involving pyrophosphorylation of the enzyme, we studied the effect of a novel GTP analog, guanosine 5′, α-β-methylene triphosphate (Gp(CH2)pp), with a methylene bond in the α-β-position that is stable to enzymatic hydrolysis. Gp(CH2)pp was as effective as GTP in stimulating rat reticulocyte adenylate cyclase in the presence of isoproterenol. Previously only guanine nucleotides with modified terminal phosphates such as guanylyl 5′-imidodiphosphate (Gpp(NH)p) were thought capable of causing persistent activation of adenylate cyclase. Gp(CH2)pp, however, caused persistent activation of rat reticulocyte and turkey erythrocyte adenylate cyclase. We conclude that guanine nucleotides do not activate adenylate cyclase by a pyrophosphorylation mechanism and that a modified γ-phosphate is not essential in guanine nucleotides for generation of the irreversibly-activated enzyme state.  相似文献   

15.
A method for preparing human platelet membranes with high adenylate cyclase activity is described. Using these membranes, epinephrine and GTP individually are noted to inhibit adenylate cyclase slightly. When present together, epinephrine and GTP act synergistically to cause a 50% inhibition of basal activity. The epinephrine effect is an alpha-adrenergic process as it is reversed by phentolamine but not propranolol. The quasi-irreversible activation of adenylate cyclase by Gpp(NH)p is time, concentration, and Mg2+-dependent but is not altered by the presence of epinephrine. Adenylate cyclase activated by Gpp(NH)p, and extensively washed to remove unbound Gpp(NH)p, is inhibited by the subsequent addition of Gpp(NH)p, GTP, and epinephrine. This effect of epinephrine is also an alpha-adrenergic phenomenon. In contrast to epinephrine which inhibits the cyclase, PGE1 addition results in enzyme stimulation. PGE1 stimulation does not require GTP addition. PGE1 accelerates the rate of Gpp(NH)p-induced activation. Low GTP concentrations (less than 1 x 10(-6) M) enhance PGE1 stimulation while higher GTP concentrations cause inhibition. These observations suggest that human platelet adenylate cyclase possesses at least two guanine nucleotide sites, one which interacts with the alpha-receptor to result in enzyme inhibition and a second guanine nucleotide site which interacts with the PGE1 receptor and causes enzyme stimulation.  相似文献   

16.
Beta 1-Adrenergic receptor proteins were extracted from turkey erythrocyte membranes with lauroyl sucrose and digitonin and purified by affinity chromatography on a column of alprenolol agarose Affi-gel 10 or 15. The 5000-fold purified receptor is able to couple functionally with the stimulatory GTP-binding protein (GS) from either turkey or duck erythrocytes. Functional coupling was achieved by three different approaches. (i) Purified beta-receptor polypeptides were coupled in phospholipid (asolectin) vesicles with GS from a crude cholate or lauroyl sucrose extract of turkey erythrocyte membranes. The detergent was removed and vesicles were formed with SM-2 beads. (ii) Purified beta-receptor was reconstituted with pure, homogeneous GS in asolectin vesicles. (iii) Purified beta-receptors were either coupled in asolectin vesicles with a mixture of pure, homogeneous Gpp(NH)p-activated GS and a lauroyl sucrose extract of turkey erythrocyte membranes, or with pure, homogeneous Gpp(NH)p-activated GS alone. The decay of activity was measured on addition of GTP and hormone. In (ii) and (iii), the detergent was removed and vesicles were formed by gel filtration on Sephadex G-50 columns. In each of the three different experimental conditions, the beta-receptor was activated with l-isoproterenol and activation was blocked with d,l-propranolol. Activated GS were measured separately by means of their capacity to activate a crude Lubrol PX-solubilized adenylate cyclase preparation from rabbit myocardial membrane. The kinetics of GS activation by purified beta-receptors occupied by l-isoproterenol was first order and activation was linearly dependent on receptor concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The mechanism of action of forskolin stimulation of adenylate cyclase was investigated by examining its effects on the enzyme's Mg2+ activated catalytic unit (C) from bovine sperm, both preceding and following complementation with human erythrocyte membranes as a source of guanine nucleotide regulatory protein (N). Prior to complementation, sperm C was not activated by either NaF (10 mM) or 5'-guanylyl-beta-gamma-imidodiphosphate (Gpp(NH)p, 10 microM), suggesting that functional N was not present in this preparation. Forskolin (100 microM) was also without effect on C. Following complementation of the sperm membranes with those of erythrocytes, Mg2+-dependent sensitivity to forskolin, NaF, and Gpp(NH)p was imparted to C. Our findings are incompatible with the current hypothesis that forskolin stimulates adenylate cyclase by direct activation of C. Rather, the data suggest that the activation process occurs through an effect on N or by augmentation of the interaction between the components of the adenylate cyclase complex.  相似文献   

18.
The involvement of calmodulin as an activator of adenylate cyclase activity was examined in isolated guinea-pig enterocytes and in a membrane preparation. In enterocytes, which responded to prostaglandin E1, vasoactive intestinal peptide and cholera toxin with a significant increase in the rate of cAMP formation trifluoperazine, a calmodulin antagonist, completely inhibited cAMP formation. In a membrane preparation adenylate cyclase activity was stimulated 10-20-fold by the GTP analog, guanosine 5'-[beta-imido]5'-triphosphate (Gpp[NH]p). Prostaglandin E1 and vasoactive intestinal peptide enhanced cAMP formation in this system by 2-3- and 1.2-1.6-fold. respectively. Addition of 200 nM calmodulin to membranes, in which endogenous calmodulin was decreased from 1.4 microgram/mg protein to 0.5 microgram/mg protein by washing with buffer containing EGTA and EDTA, resulted in a 3-4-fold increase of adenylate cyclase activity. The absolute increment in adenylate cyclase activity caused by calmodulin (10-15 pmol cAMP/min per mg protein) was approximately the same in the absence or presence of Gpp[NH]p. The apparent Ka for Gpp[NH]p (6 . 10-7 M) was not significantly changed by the addition of calmodulin. Although endogenous calcium (approx. 10 microM) in the enzyme assay was adequate to affect stimulation by calmodulin, a maximal effect was observed at a calcium concentration of 100 microM. These findings indicate that a calmodulin-sensitive form of adenylate cyclase is present in guinea-pig enterocytes, and that stimulation of cAMP formation in the intestinal mucosa may involve a calmodulin-mediated mechanism.  相似文献   

19.
The GTP analog 5′-quanylyl-imidodiphosphate Gpp(NH) p potentiated the action of VIP on adenylate cyclase from intestinal epithelial cell membranes. The other nucleotides tested were also active on adenylate cyclase with the following order of potency GTP>GDP>GMP>ITP>UTP=CTP. Guanine nucleotides act by increasing the Vmax of the enzyme activity and by decreasing the Km of enzyme activation by VIP. Activation of the peptide-induced adenylate cyclase activity by Gpp (NH) p was inhibited by GTP and the other nucleotides with the same order and range of potency than those observed for their intrinsic stimulatory effect on adenylate cyclase. These data demonstrate the potent and specific action of quanine nucleotides on the VIP-sensitive adenylate cyclase.  相似文献   

20.
The effect of molybdate on adenylate cyclase (EC 4.6.1.1) in rat liver plasma membranes has been examined. The apparent K alpha for molybdate activation of the enzyme is 4.5 mM, and maximal, 7-fold stimulation is achieved at 50 mM. The observed increase in cAMP formation in the adenylate cyclase assay is not due to: (a) an inhibition of ATP hydrolysis; (b) a molybdate-catalyzed conversion of ATP to cAMP; (c) an inhibition of cAMP hydrolysis; or (d) an artifact in the isolation of cAMP formed in the reaction. Molybdate activation of adenylate cyclase is a general phenomenon exhibited by the enzyme in brain, cardiac, and renal tissue homogenates and in erythrocyte ghosts. However, like fluoride and guanyl-5'-yl imidodiphosphate (Gpp(NH)p), molybdate does not activate the soluble rat testicular adenylate cyclase. Molybdate is a reversible activator of adenylate cyclase. Activation is not due to an increase in ionic strength and is independent of the salt used to introduce molybdate. Molybdate does not activate adenylate cyclase previously stimulated with Gpp(NH)p or fluoride. At concentration greater than 20 mM, molybdate inhibits fluoride-stimulated adenylate cyclase, and at concentrations greater than 100 mM, molybdate stimulation of basal adenylate cyclase activity is diminished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号