首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of 1-(3-aryl-2-propenoyl)-4-oxopiperidines (1) as well as some related semicarbazones (2) and thiosemicarbazones (3) were prepared in order to determine whether the relative locations of aryl rings and amidic groups would lead to novel anticonvulsant agents. Initially the compounds were administered intraperitoneally to mice and examined in the maximal electroshock (MES), subcutaneous pentylenetetrazole (scPTZ) and neurotoxicity (NT) screens. The biodata revealed that anticonvulsant properties were displayed by most of the compounds in series (1), in half of the semicarbazones (2) while protection was absent by members of series (3). Molecular modeling was utilized in order to compare the positions of a phenyl ring in relation to amidic groups in representative compounds in series (1-3) with previously reported anticonvulsant agents. Molecular simplification of 4-oxo-1-(3-phenyl-2-propenoyl)piperidine (la) led to 1-(3-phenyl-2-propenoyl)piperidine (7) and N,N-diethylcinnamamide (8) with retention of anticonvulsant properties. Both (la) and (8) afforded protection in the hippocampal kindling screen in rats. When administered orally to rats, (la) and (8) demonstrated activity in the MES screen and in the case of (8), a huge protection index was observed revealing it to be an important lead compound. The IC50 values of all of the compounds towards murine P388 cells were in excess of 50 microM while several compounds displayed cytotoxicity towards Mycobacterium tuberculosis.  相似文献   

2.
A variety of N-(2-amino-phenyl)-4-(heteroarylmethyl)-benzamides were designed and synthesized. These compounds were shown to inhibit recombinant human HDAC1 with IC50 values in the sub-micromolar range. In human cancer cells growing in culture these compounds induced hyperacetylation of histones, induced the expression of the tumor suppressor protein p21WAF1/Cip1, and inhibited cellular proliferation. Certain compounds of this class also showed in vivo activity in various human tumor xenograft models in mice.  相似文献   

3.
We have designed the nitrophenylfurylacryl-substituted benzophenone 4f as a non-thiol farnesyltransferase inhibitor utilizing a novel aryl binding site of farnesyltransferase. Variation of the 2-acylamino substituent at the benzophenone core structure of our initial lead 4f yielded several non-thiol farnesyltransferase inhibitors with improved activity. These compounds display activity in the low nanomolar range.  相似文献   

4.
We have designed arylfurylacryl-substituted benzophenones as non-thiol farnesyltransferase inhibitors utilizing a novel aryl binding site of farnesyltransferase. These compounds display activity in the low nanomolar range.  相似文献   

5.
We have developed the 4-nitrocinnamoyl substituted benzophenone 4a as a novel non-thiol farnesyltransferase inhibitor. Replacement of the p-tolyl moiety of our initial lead structure 4a by different para and ortho substituted phenyl residues as well as by 1-naphthyl resulted in derivatives with considerably enhanced activity displaying IC(50) values between 42 and 52 nM. These compounds represent novel, readily accessible non-thiol farnesyltransferase inhibitors being more active than the corresponding thiol-containing analogues.  相似文献   

6.
A series of N-alkylbenzenesulfonamides were developed from a high throughput screening hit. Classic and parallel synthesis strategies were employed to produce compounds with good in vitro and in vivo gamma-secretase activity.  相似文献   

7.
Inhibition of sirtuin 2 (SIRT2) is known to be protective against the toxicity of disease proteins in Parkinson's and Huntington's models of neurodegeneration. Previously, we developed SIRT2 inhibitors based on the 3-(N-arylsulfamoyl)benzamide scaffold, including3-(N-(4-bromophenyl)sulfamoyl)-N-(4-bromophenyl)benzamide(C2-8, 1a), which demonstrated neuroprotective effects in a Huntington's mouse model, but had low potency of SIRT2 inhibition. Here we report that N-methylation of 1a greatly increases its potency and results in excellent selectivity for SIRT2 over SIRT1 and SIRT3 isoforms. Structure-activity relationships observed for 1a analogs and docking simulation data suggest that the para-substituted amido moiety of these compounds could occupy two potential hydrophobic binding pockets in SIRT2. These results provide a direction for the design of potent drug-like SIRT2 inhibitors.  相似文献   

8.
2,3,4,6-Tetra-O-acetyl-beta-D-glucopyranosyl- and 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl azides were transformed into the corresponding per-O-acetylated N-(beta-D-glycopyranosyl) amides via a PMe(3) mediated Staudinger protocol (generation of N-(beta-D-glycopyranosyl)imino-trimethylphosphoranes followed by acylation with carboxylic acids, acid chlorides or anhydrides). The deprotected compounds obtained by Zemplén deacetylation were evaluated as inhibitors of rabbit muscle glycogen phosphorylase b. The best inhibitor of this series has been N-(beta-D-glucopyranosyl) 3-(2-naphthyl)-propenoic amide (K(i)=3.5microM).  相似文献   

9.
A series of 4-thiazolidinones were evaluated as selective inhibitors of the HIV-RT enzyme. Our attempt in correlating the derived physicochemical properties with the HIV-RT inhibitory activity resulted in some statistically significant QSAR models with good predictive ability. The QSAR studies indicated the role of lipophilicity, dipole moment and out-of-plane potential energy of the compounds in rationalizing the activity. One of the compounds, 1, inhibited the enzyme at 0.204 μM concentration with minimal toxicity to MT-4 cells.  相似文献   

10.
SIRT2 inhibitors with a N-(3-phenylpropenoyl)-glycine tryptamide backbone were studied. This backbone has been developed in our group, and it is derived from a compound originally found by virtual screening. In addition, compounds with a smaller 3-phenylpropenoic acid tryptamide backbone were also included in the study. Binding modes for the new compounds and the previously reported compounds were analyzed with molecular modelling methods. The approach, which included a combination of molecular dynamics, molecular docking and cluster analysis, showed that certain docking poses were favourable despite the conformational variation in the target protein. The N-(3-phenylpropenoyl)-glycine tryptamide backbone is also a good backbone for SIRT2 inhibitors, and the series of compounds includes several potent SIRT2 inhibitors.  相似文献   

11.
A novel class of N-(4-{[4-(1H-benzoimidazol-2-yl)-arylamino]-methyl}-phenyl)-benzamides are described as inhibitors of the endo-beta-glucuronidase heparanase. Among them are N-(4-{[4-(1H-benzoimidazol-2-yl)-phenylamino]-methyl}-phenyl)-3-bromo-4-methoxy-benzamide (15h), and N-(4-{[5-(1H-benzoimidazol-2-yl)-pyridin-2-ylamino]-methyl}- phenyl)-3-bromo-4-methoxy-benzamide (23) which displayed good heparanase inhibitory activity (IC(50) 0.23-0.29 microM), with the latter showing oral exposure in mice.  相似文献   

12.
SIRT6 is a deacetylase of histone H3 and inhibitors of SIRT6 have been thought as potential agents for treatment of diabetes. Herein we report the discovery of a series of new SIRT6 inhibitors containing the skeleton 1-phenylpiperazine. Among them, compound 5-(4-methylpiperazin-1-yl)-2-nitroaniline (6d) is the most potent one, which showed an IC50 value of 4.93 μM against SIRT6 in the Fluor de Lys (FDL) assay. It displayed KD values of 9.76 μM and 10 μM in surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays, respectively. In selectivity assay, 6d showed no activity against other members of the HDAC family (SIRT1-3 and HDAC1-11) at concentrations up to 200 µM. In a mouse model of type 2 diabetes, 6d could significantly increase the level of glucose transporter GLUT-1, thereby reducing blood glucose. Overall, this study provides a promising lead compound for subsequent drug discovery targeting SIRT6.  相似文献   

13.
CHK-1 is one of the key enzymes regulating checkpoints in cellular growth cycles. Novel 4-(amino-alkylamino)-3-benzimidazole-quinolinones were prepared and assayed for their ability to inhibit CHK-1. These compounds are potent cell permeable CHK-1 inhibitors and showed synergistic effect with a DNA-damaging agent, camptothecin.  相似文献   

14.
A series of (+/-)-3-(4-aminophenyl) pyrrolidin-2,5-diones substituted in the 1-, 3- or 1,3-position with an aryl or long chain alkyl function are weak inhibitors of the metabolism of all-trans retinoic acid (RA) by rat liver microsomes (68-75% inhibition) compared with ketoconazole (85%). Further studies with the 1-cyclohexyl analogue (1) (IC50 = 98.8 microM, ketoconazole, 22.15 microM) showed that it was not stereoselective in its inhibition. (+/-)-(1) was not an inhibitor of pig brain microsomal enzyme (ketoconazole, IC50 = 20.9 microM), had little effect on human liver microsomal enzyme (19.3%, ketoconazole, 81.6%) or human placental microsomal enzyme (9.8%, ketoconazole 73.9%) but was a weak inhibitor of human and rat skin homogenates (52.6% and IC50 = 211.6 microM respectively; ketoconazole, 38.8% and 85.95 microM). In RA-induced cell cultures of human male genital fibroblasts and HaCat cells, (+/-)-(1) was a weak inhibitor (c. 53% at 200 microM) whereas ketoconazole showed high potency (c. 65% at 0.625 microM and 0.25 microM respectively). The nature of the induced target enzyme is discussed.  相似文献   

15.
A novel class of Janus tyrosine kinase 3 (JAK3) inhibitors based on a 2-benzimidazoylpurinone core structure is described. Through substitution of the benzimidazoyl moiety and optimization of the N-9 substituent of the purinone, compound 24 was identified incorporating a chroman-based functional group. Compound 24 shows excellent kinase activity, good oral bioavailability and demonstrates efficacy in an acute mechanistic mouse model through inhibition of interleukin-2 (IL-2) induced interferon-γ (INF-γ) production.  相似文献   

16.
Tryptophan hydroxylase (TPH) is a key enzyme in the synthesis of serotonin. As a neurotransmitter, serotonin plays important physiological roles both peripherally and centrally. Here we describe the discovery of substituted triazines as a novel class of tryptophan hydroxylase inhibitors. This class of TPH inhibitors can selectively reduce serotonin levels in murine intestine after oral administration without affecting levels in the brain. These TPH inhibitors may provide novel treatments for gastrointestinal disorders associated with dysregulation of the serotonergic system, such as chemotherapy-induced emesis and irritable bowel syndrome.  相似文献   

17.
Chemical evolution of a HTS-based fragment hit resulted in the identification of N-(1-adamantyl)-2-[4-(2-tetrahydropyran-4-ylethyl)piperazin-1-yl]acetamide, a novel, selective T-type calcium channel (Ca(v)3.2) inhibitor with in vivo antihypertensive effect in rats.  相似文献   

18.
19.
The present paper describes the synthesis, biological evaluation and molecular simulation studies of a series of N-(4-hydroxyphenyl)-3,4,5-trimethoxybenzamide derivatives with N,N-dialkylaminoethoxy/propoxy moiety as potential memory enhancers with acetylcholinesterase-inhibiting activity having IC50 in low micromolar range (4.0–16.5 μM). All the compounds showed a good degree of agreement between in vivo and in vitro results as most of these derivatives showed dose-dependent increase in percent retention. Compound 10a showed significant % retention of 84.73 ± 4.51 as compared to piracetam (46.88 ± 5.42) at 3 mg kg?1 and also exhibited a maximal percent inhibition of 97% at 50 μM. Molecular docking, MM-GBSA and molecular simulation studies were performed establishing a correlation between the experimental biology and in silico results. In silico results indicate that all the compounds have better docking scores and predicted binding free energies as compared to cocrystallized ligand with the best potent ligand retaining conserved hydrophobic interactions with residues of catalytic triad (HIS447), catalytic anionic site (CAS) (TRP86, TYR337, PHE338) and peripheral anionic site (PAS) (TYR72, TYR124, TRP286 and TYR341). Root mean square deviation (RMSD = 2.4 Å) and root mean square fluctuations of 10a–AChE complex during simulation proved its stable nature in binding toward acetylcholinesterase. The docked conformation of 10a and other analogs at the binding site have also been simulated with polar and nonpolar interactions interlining the gorge residues from PAS to catalytic triad.  相似文献   

20.
A novel series of glycine transporter 1 (GlyT1) inhibitors is described. Scoping of the heterocycle moiety of hit 4-chlorobenzenesulfonamide 1 led to replacement of the piperidine with an azepane for a modest increase in potency. Phenyl sulfonamides proved superior to alkyl and non-phenyl aromatic sulfonamides, while subsequent ortho substitution of the 2-(azepan-1-yl)-2-phenylethanamine aromatic ring yielded 39 (IC50 37 nM, solubility 14 μM), the most potent GlyT1 inhibitor in this series. Favorable brain–plasma ratios were observed for select compounds in pharmacokinetic studies to evaluate CNS penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号