首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
叶绿体发育和光对小麦叶谷氨酰胺合成酶基因表达的影响   总被引:3,自引:0,他引:3  
利用电镜、DEAE-纤维素柱层析技术和小麦叶谷氨酰胺合成酶(GS)酶活性测定,研究了小麦叶片不同发育梯度的叶绿体超微结构和GS同功酶活性之间的关系。结果表明,从叶基至叶尖,随着叶绿体的成熟,净光合率增加,GS活性增加。各发育阶段离体叶绿体的3H-Ura,3H-Leu 掺入试验和GS的Northern blot表明,基部是基因表达活性最高的部位。GSm RNA 在叶绿体发育阶段最多,而GS酶活性则在成熟叶绿体的部位最高。对黄化苗进行光照,GSm RNA 和GS活性明显增加,72小时达到正常绿苗同等水平。由此说明核编码的叶绿体GS基因为光调控基因,明显促进了叶绿体GS基因的转录,而后叶绿体GS合成量增加  相似文献   

3.
Higher plants assimilate nitrogen in the form of ammonia through the concerted activity of glutamine synthetase (GS) and glutamate synthase (GOGAT). The GS enzyme is either located in the cytoplasm (GS1) or in the chloroplast (GS2). To understand how modulation of GS activity affects plant performance, Lotus japonicus L. plants were transformed with an alfalfa GS1 gene driven by the CaMV 35S promoter. The transformants showed increased GS activity and an increase in GS1 polypeptide level in all the organs tested. GS was analyzed by non-denaturing gel electrophoresis and ion-exchange chromatography. The results showed the presence of multiple GS isoenzymes in the different organs and the presence of a novel isoform in the transgenic plants. The distribution of GS in the different organs was analyzed by immunohistochemical localization. GS was localized in the mesophyll cells of the leaves and in the vasculature of the stem and roots of the transformants. Our results consistently showed higher soluble protein concentration, higher chlorophyll content and a higher biomass accumulation in the transgenic plants. The total amino acid content in the leaves and stems of the transgenic plants was 22–24% more than in the tissues of the non-transformed plants. The relative abundance of individual amino acid was similar except for aspartate/asparagine and proline, which were higher in the transformants.Abbreviations GS Glutamine synthetase - UTR Untranslated region  相似文献   

4.
G. Mäck  R. Tischner 《Planta》1994,194(3):353-359
In extracts from the primary leaf blade of sugar beet (Beta vulgaris L.) we separated a chloroplastic isoform (GS 2) of glutamine synthetase (GS, EC 6.3.1.2) and one or two (depending on leaf age) cytosolic isoforms (GS 1a and GS 1b). The latter were prominent in the early (GS 1a) and late stages of leaf ontogeny (GS 1a and GS 1b), whereas during leaf maturation GS 2 was the predominantly active GS isoform. The GS 1 isoforms were active exclusively in the octameric state although tetrameric GS 1 protein was detected immunologically. Their activity stayed at a relatively constant level during leaf ontogeny; an increase was observed only in the senescent leaf. The activity of GS 2, however, changed drastically during primary leaf ontogeny and was modulated by changes in the oligomeric state of the active enzyme. In the early and late stages of leaf ontogeny when GS 2 activity was low (lower than that of the GS 1 isoforms), GS 2 was active only in the octameric state. In the maturing leaf, when GS 2 activity had reached its maximum level (much higher than that of the GS 1 isoforms), 80 of total GS 2 activity was due the activity of the tetrameric form of the enzyme and 20 was due to octameric GS 2. Tetrameric GS 2 was a hetero-tetramer and thus not the unspecific dissociation product of homo-octameric GS 2. In addition, GS 2 activity was modulated by an activation/inactivation of the tetrameric GS 2 protein. Due to an activation of the GS 2 tetramer, the activity of tetrameric GS 2 increased during leaf maturation from zero level 23-fold compared with that of GS 1a and 18-fold compared with that of GS 1b. Possible activators of tetrameric GS 2 are thiol-reactive substances. During leaf senescence, GS 2 activity decreased to zero; this decrease was due to an inactivation of the tetrameric GS 2 protein probably caused by oxidation.Abbreviations FLL final lamina length - FPLC fast protein liquid chromatography - GS glutamine synthetase - GHA -glutamyl hydroxamate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase Dr. Roger Wallsgrove's (Rothamsted Experimental Station, Harpenden, UK) generous gift of GS antiserum is greatly appreciated.  相似文献   

5.
P. Lindblad  B. Bergman 《Planta》1986,169(1):1-7
Nitrogen-fixing cyanobacteria inhabit the zone between the inner and outer cortex of cycad coralloid roots. In the growing tip of such roots the cyanobacterial heterocyst frequency, nitrogenase activity (C2H2-reduction) and glutamine synthetase activity (both transferase and biosynthetic) were comparable to those found in freeliving cyanobacteria. The relative level of glutamine synthetase protein and its pattern of cellular/subcellular localization in heterocysts and vegetative cells were also similar to those of free-living cyanobacteria. However, there was a progressive decline in nitrogenase activity along the coralloid root with maximum reduction occurring in the regions farthest from the growing tip. A similar but less pronounced pattern was observed for glutamine synthetase activity. Distribution of glutamine synthetase protein in cyanobacteria in the first 2–3 mm of the root tip indicated a slight decrease in the heterocysts and vegetative cells. However, the overall level of cyanobacterial glutamine synthetase protein did not change because of a drastic increase in the numbers of heterocysts, which contain a proportionally higher level of glutamine synthetase than the vegetative cells.Abbreviation GS glutamine synthetase  相似文献   

6.
Cellular localization of cytosolic glutamine synthetase (GS1; EC 6.3.1.2) in vascular bundles of leaf blades of rice (Oryza sativa L.), at the stage at which leaf blades 6 (the lowest position) to 10 were fully expanded, was investigated immunocytologically with an affinity-purified anti-GS1 immunoglobulin G. Strong signals for GS1 protein were detected in companion cells of large vascular bundles when blades 6–8 were tested. Signals for GS1 were also observed in vascular-parenchyma cells of both large and small vascular bundles. The results further support our hypothesis that GS1 is important for the export of leaf nitrogen from senescing leaves. The signals in companion cells were less striking in the younger green leaves and were hardly detected in the non-green portion of the 11th blade. In the non-green blades, strong signals for GS1 protein were detected in sclerenchyma and xylemparenchyma cells. When total GS extracts prepared from the 6th,10th, and the non-green 11th blades were subjected to anion-exchange chromatography, the activity of GS1 was clearly separated from that of chloroplastic GS, indicating that GS1 proteins detected in the vascular tissues were able to synthesize glutamine. The function of GS1 detected in the developing leaves is discussed.Abbreviations Fd-GOGAT ferredoxin-dependent glutamate synthase - GS1 cytosolic glutamine synthetase - GS2 plastidic glutamine synthetase - IgG immunoglobulin G  相似文献   

7.
The glutamine synthetase of Suaeda maritima. In vivo and in vitro action of NaCl Glutamine synthetase (GS; EC 6.3.1.2) was isolated and characterized from roots and aerial parts of the halophyte Suaeda maritima (L.) Dum. var. macrocarpa Moq. Km values of GS were identical in both types of organ and unchanged by the salinity in the medium. Addition of NaCl in the culturing solution increased the specific activity of the enzyme especially in the aerial parts, where GS is more abundant. This increase was all the more pronounced if the plant-salt contact period was extended (between 21 and 45 days). In vitro the addition of 0 to 500 m M of salt did not affect the activity of GS at satured substrate concentrations. At low glutamate concentrations in combination with 300 m M NaCl or more, a slight competitive inhibition was observed, never over 18%. – The remarkable insensibility of GS to salinity in vitro and the stimulating effect of NaCl in vivo on the synthesis of the leaf enzyme indicates that GS plays a fundamental part in the assimilation of NH4+ in the halophyte Suaeda maritima var. macrocarpa.  相似文献   

8.
The role of cytosolic glutamine synthetase in wheat   总被引:15,自引:1,他引:14  
The role of glutamine synthetase (GS; EC 6.3.1.2) was studied in wheat. GS isoforms were separated by HPLC and the two major leaf isoforms (cytosolic GS1 and chloroplastic GS2) were found to change in content and activity throughout plant development. GS2 dominated activity in green, rapidly photosynthesising leaves compared to GS1 which was a minor component. GS2 remained the main isoform in flag leaves at the early stages of grain filling but GS1 activity increased as the leaves aged. During senescence, there was a decrease in total GS activity which resulted largely from the loss of GS2 and thus GS 1 became a greater contributor to total GS activity. The changes in the activities of the GS isoforms were mirrored by the changes in GS proteins measured by western blotting. The changes in GS during plant development reflect major transitions in metabolism from a photosynthetic leaf (high GS2 activity) towards a senescencing leaf (relatively high GS1 activity). It is likely that, during leaf maturation and subsequently senescence, GS1 is central for the efficient reassimilation of ammonium released from catabolic reactions when photosynthesis has declined and remobilisation of nitrogen is occurring. Preliminary analysis of transgenic wheat lines with increased GS1 activity in leaves showed that they develop an enhanced capacity to accumulate nitrogen in the plant, mainly in the grain, and this is accompanied by increases in root and grain dry matter. The possibility that the manipulation of GS may provide a means of enhancing nitrogen use in wheat is discussed.  相似文献   

9.
The metabolism of glutamine in the leaf and subtended fruit of the aging pea (Pisum sativum L. cv. Burpeeana) has been studied in relation to changes in the protein, chlorophyll, and free amino acid content of each organ during ontogenesis. Glutamine synthetase [EC 6.3.1.2] activity was measured during development and senescence in each organ. Glutamate synthetase [EC 2.6.1.53] activity was followed in the pod and cotyledon during development and maturation. Maximal glutamine synthetase activity and free amino acid accumulation occurred together in the young leaf. Glutamine synthetase (in vitro) in leaf extracts greatly exceeded the requirement (in vivo) for reduced N in the organ. Glutamine synthetase activity, although declining in the senescing leaf, was sufficient (in vitro) to produce glutamine from all of the N released during protein hydrolysis (in vivo). Maximal glutamine synthetase activity in the pod was recorded 6 days after the peak accumulation of the free amino acids in this organ.

In the young pod, free amino acids accumulated as glutamate synthetase activity increased. Maximal pod glutamate synthetase activity occurred simultaneously with maximal leaf glutamine synthetase activity, but 6 days prior to the corresponding maximum of glutamine synthetase in the pod. Cotyledonary glutamate synthetase activity increased during the assimilatory phase of embryo growth which coincided with the loss of protein and free amino acids from the leaf and pod; maximal activity was recorded simultaneously with maximal pod glutamine synthetase.

We suggest that the activity of glutamine synthetase in the supply organs (leaf, pod) furnishes the translocated amide necessary for the N nutrition of the cotyledon. The subsequent activity of glutamate synthetase could provide a mechanism for the transfer of imported amide N to alpha amino N subsequently used in protein synthesis. In vitro measurements of enzyme activity indicate there was sufficient catalytic potential in vivo to accomplish these proposed roles.

  相似文献   

10.
Changes in the levels of cytosolic glutamine synthetase (GS1) and chloroplastic glutamine synthetase (GS2) polypeptides and of corresponding mRNAs were determined in leaves of hydroponically grown rice (Oryza sativa) plants during natural senescence. The plants were grown in the greenhouse for 105 days at which time the thirteenth leaf was fully expanded. This was counted as zero time for senescence of the twelfth leaf. The twelfth leaf blade on the main stem was analyzed over a time period of −7 days (98 days after germination) to +42 days (147 days after germination). Total GS activity declined to less than a quarter of its initial level during the senescence for 35 days and this decline was mainly caused by a decrease in the amount of GS2 polypeptide. Immunoblotting analyses showed that contents of other chloroplastic enzymes, such as ribulose-1,5-bisphosphate carboxylase/oxygenase and Fd-glutamate synthase, declined in parallel with GS2. In contrast, the GS1 polypeptide remained constant throughout the senescence period. Translatable mRNA for GS1 increased about fourfold during the senescence for 35 days. During senescence, there was a marked decrease in content of glutamate (to about one-sixth of the zero time value); glutamate is the major form of free amino acid in rice leaves. Glutamine, the major transported amino acid, increased about threefold compared to the early phase of the harvest in the senescing rice leaf blades. These observations suggest that GS1 in senescing leaf blades is responsible for the synthesis of glutamine, which is then transferred to the growing tissues in rice plants.  相似文献   

11.
Summary Localization of glutamine synthetase inSolanum tuberosum leaves was investigated by techniques of Western tissue printing and immunogold electron microscopy. Anti-GS antibodies used in immunolocalization recognize two peptides (45 kDa and 42 kDa) on Western blots. Antibody stained tissue prints on nitrocellulose membranes allowed low resolution localization of GS. Immunostaining was most evident in the adaxial phloem of the leaf midribs and petiole veins. High-resolution localization of glutamine synthetase by immunogold electron microscopy revealed that this enzyme occurs in both the chloroplasts and the cytosol ofS. tuberosum leaf cells. However, GS was specifically associated with the chloroplasts of mesophyll cells and with the cytoplasm of phloem companion cells. The evidence for cell-specific localization of chloroplast and cytosolic GS presented here agrees with the recently reported cell-specific pattern of expression of GUS reporter gene, directed by promoters for chloroplast and cytosolic GS form in tobacco transgenic plants. These data provide additional clues to the interpretation of the functional role of these different isoenzymes and its relationship with their specific localization.Abbreviations BSA bovine serum albumin - EM electron microscope - GOGAT glutamate synthase - GS glutamine synthetase - GUS -glucuronidase - IgG immunoglobulin - PBS phosphate buffer saline - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

12.
Glutamine synthetase (GS; EC.6.3.1.2.) occurs as cytosolic (GS1) and plastidic (GS2) polypeptides. This paper describes the expression of GS isoenzymes in coleoptile during the anaerobic germination of rice (Oryza sativa L.) and the influence of exogenous nitrate on this. By immunoprecipitation with anti-GS serum, two polypeptides of 41- and 44-kDa were detected of which the former was predominant. After fractionation by ion-exchange chromatography, the 41 and 44 kDa bands were identified as GS1 and GS2, respectively. Northern blot analysis with specific probes showed the presence of mRNA for cytosolic GS but not for the plastidic form. The presence of exogenous nitrate did not alter the activity and expression of GS in the coleoptile. The role of GS during the anaerobic germination of rice seems to induce the re-assimilation of ammonia rather than the assimilation of nitrate.Abbreviations GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 platidic glutamine synthetase We are grateful to Dr. Julie V. Cullimore for providing GS anti-serum and clones. The research was supported by the National Research Council of Italy, special project RAISA, sub-project N. 2 paper N. 1586.  相似文献   

13.
14.
Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, glutamate puruvate transaminase and glutamate oxaloacetate transaminase have been assayed in developing testa-pericarp and endosperm of two wheat varieties, namely Shera (11.6% protein) and C-306 (9.8% protein). On per organ basis, activities of all the enzymes studied, except glutamine synthetase, increased during development. Glutamine synthetase activity decreased during development in the testa-pericarp, whereas, no glutamine synthetase activity could be detected in endosperm of either variety at any stage of development. Compared to testa-pericarp, endosperm had higher activities of glutamate synthase and glutamate pyruvate transaminase. On the whole, enzyme activities in Shera were higher, as compared to C-306. Developmental patterns and relative levels of enzyme activities in the two varieties were more or less the same, when expressed on dry weight basis or as specific activities. The results suggest that ammonia assimilation in developing wheat grain takes place by the glutamate dehydrogenase pathway in the endosperm; and both by the glutamate dehydrogenase and glutamine synthetase—glutamate synthase pathways in the testa-pericarp.  相似文献   

15.
Gisela Mäck 《Planta》1995,196(2):231-238
One cytosolic glutamine synthetase (GS, EC 6.3.1.2) isoform (GS 1a) was active in the germinating seeds of barley (Hordeum vulgare L.). A second cytosolic GS isoform (GS 1b) was separated from the leaves as well as the roots of 10-d-old seedlings. The chloroplastic isoform (GS 2) was present and active only in the leaves. The three GS isoforms were active in N-supplied (NH+ 4 or NO 3 ) as well as in N-free-grown seedlings. This indicates (i) that a supply of nitrogen to the germinating seeds was not necessary for the induction of the GS isoforms and (ii) that no nitrogen-specific isoforms appeared during growth of seedlings with different nitrogen sources. The activity of GS, however, depended on the seedlings' nitrogen source: the specific activity was much higher in the leaves and much lower in the roots of NH+ 4-grown barley than in the respective organs of NO 3 -fed or N free-grown plants. With increasing concentrations of NH+ 4 (supplied hydroponically during growth), the specific activity of GS 1b increased in the leaves, but decreased in the roots. The activity of GS 2 (leaf) also increased with increasing NH+ 4 supply, whereas GS 1a activity (leaf and root) was not affected. The changes in the activities of GS 1b and GS 2 were correlated with changes in the subunit compositions of the active holoenzymes: growth at increased levels of external NH+ 4 resulted in an increased abundance of one of the four GS subunits, and of two of the five GS 1b subunits in the leaves. In the roots, however, the abundance of these two GS 1b subunits was decreased under the same growth conditions, indicating an organ-specific difference either in the expression of the genes coding for the respective GS 1b subunits or in the assembly of the GS 1b holoenzymes. Furthermore, growth at different levels of NH+ 4 resulted in changes in the substrate affinities of the isoforms GS 1b (root and leaf) and GS 2 (leaf), presumably due to the changes in the subunit compositions of the active holoenzymes.Abbreviations FPLC fast protein liquid chromatography - GHA -glutamyl hydroxamate - GS glutamine synthetase Dr. Roger Wallsgrove's (Rothamsted Experimental Station, Harpenden, UK) generous gift of GS antiserum is greatly appreciated.  相似文献   

16.
Abstract Glutamine uptake in the cyanobiont Nostoc ANTH was energy-dependent and repressed in ammonia-grown cells. l -Methionine- dl -sulphoximine (MSX), a glutamate analogue and an inhibitor of glutamine synthetase (GS), did not affect glutamine uptake whereas azaserine, an inhibitor of glutamate synthase (GOGAT) did, suggesting that GS activity is not necessarily involved in the glutamine uptake system and that increased intracellular glutamine level regulates its own uptake. Repression of glutamine uptake by ammonia did not require de novo protein synthesis but required GS activity, suggesting that ammonia itself was not the repressor signal. The derepression of the glutamine uptake system did not require GS activity but required de novo protein synthesis.  相似文献   

17.
The catalytic activities of the chloroplastic and cytosolic isoenzymes of phosphoglycerate kinase (PGK; EC 2.7.2.3) have been followed during the development of the first leaf of barley (Hordeum vulgare L.) grown for 7 d in darkness followed by transfer to continuous illumination. The investigation has included both the study of a standard leaf section, measured from the leaf tip, over the whole life of the leaf and the study of serial sections of leaf, measured from the leaf base, at a standard sampling time. The results of both approaches were fully compatible. As the catalytic activity of each isoenzyme in the standard assay is directly proportional to the amount of isoenzyme protein present, the catalytic activities may be interpreted wholly in terms of enzyme synthesis and degradation. Both isoenzymes are synthesized in darkness and in etiolated barley are present at a ratio of about 2674 for the cytosolic to chloroplastic isoenzymes. Illumination results in a fivefold or greater increase in chloroplast PGK over a number of days with little change of the cytosolic isoenzyme, resulting in an eventual ratio of cytosolic to chloroplastic isoenzymes approaching the green-leaf value of about 991. Prior to any detectable onset of senescence a 15-fold increase in cytosolic isoenzyme commenced while the amount of chloroplast PGK remained constant. It is suggested that the increased cytosolic PGK may be involved in the export of carbohydrate reserves (starch) prior to leaf senescence. Both isoenzymes subsequently decline in parallel to total protein and chlorophyll in the course of senescence.Abbreviations DHAP reductase dihydroxyacetone-phosphate reductase - GS glutamine synthetase - LHCP light-harvesting chlorophyll-a/b-binding protein - PGK phosphoglycerate kinase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase This work was supported by the Science and Engineering Research Council (grant no. GR/E54504).  相似文献   

18.
Glutamine synthetase (EC 6.3.1.2) has been purified from a collagenolytic Vibrio alginolyticus strain. The apparent molecular weight of the glutamine synthetase subunit was approximately 62,000. This indicates a particle weight for the undissociated enzyme of 744,000, assuming the enzyme is the typical dodecamer. The glutamine synthetase enzyme had a sedimentation coefficient of 25.9 S and seems to be regulated by a denylylation and deadenylylation. The pH profiles assayed by the -glutamyltransferase method were similar for NH4-shocked and unshocked cell extracts and isoactivity point was not obtained from these eurves. The optimum pH for purified and crude cell extracts was 7.9. Cell-free glutamine synthetase was inhibited by some amino acids and AMP. The transferase activity of glutamine synthetase from mid-exponential phase cells varied greatly depending on the sources of nitrogen or carbon in the growth medium. Glutamine synthetase level was regulated by nitrogen catabolite repression by (NH4)2SO4 and glutamine, but cells grown, in the presence of proline, leucine, isoleucine, tryptophan, histidine, glutamic acid, glycine and arginine had enhanced levels of transferase activity. Glutamine synthetase was not subject to glucose, sucrose, fructose, glycerol or maltose catabolite repression and these sugars had the opposite effect and markedly enhanced glutamine synthetase activity.Abbreviations GS glutamine synthetase - SMM succinate minimal medium - ASMM ammonium/succinate minimal medium - GT -glutamyl transferase - SVP snake venom phosphodiesterase  相似文献   

19.
20.
Glutamine synthetase (GS) (E.C.6.3.1.2) activity in Chlorella cells decreased when NH4+ was added to nitrogen-free growth medium. This GS inactivation had such a rate, that it could not be due to the repression of enzyme synthesis: the GS activity decreased by 20% within 5 minutes of NH4+ assimilation. Glutamine content in cell increased in 2.5 times for this period. In vitro experiments have shown that glutamine is a strong inhibitor of GS from Chlorella grown in the presence of NO3-, and in a less degree--an inhibitor of GS from cells grown in ammonium-containing medium. The data obtained are negative with respect to possible mechanisms of GS activity regulation via adenylation and ATP-dependent destruction of glutamine synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号